scholarly journals Spatial distributions of expansion rate, cell division rate and cell size in maize leaves: a synthesis of the effects of soil water status, evaporative demand and temperature

2000 ◽  
Vol 51 (350) ◽  
pp. 1505-1514 ◽  
Author(s):  
François Tardieu ◽  
Matthieu Reymond ◽  
Philippe Hamard ◽  
Christine Granier ◽  
Bertrand Muller
1975 ◽  
Vol 26 (5) ◽  
pp. 871 ◽  
Author(s):  
GG Johns ◽  
RCG Smith

The accuracy of six published functions for deriving dryland water use from evaporative demand and soil water status was assessed by incorporating them in water budgets which were used to estimate dryland soil water status from actual climatic records. Budget-derived estimates were compared with values actually measured under improved pastures in the field over an 842 day period. The root mean square (RMS) of the differences between computed and observed soil water values was used to evaluate the various functions. RMS values were found to vary from 8.1 to 29.5 mm for the various functions tested. Soil water estimations made by using a simple ratio function were generally as good as or better than those made by using more complex functions. The sensitivity of the various functions to changes in their input assumptions was tested. The results of these tests will facilitate the selection of the optimum functions for conditions other than those encountered in this study. Reduced accuracy of soil water prediction resulted from the use of functions to set water use equal to the potential rate, regardless of the overall dryness of the soil profile, whenever recent rainfall was calculated to have made water available in the surface zone.


2017 ◽  
Author(s):  
François Bertaux ◽  
Samuel Marguerat ◽  
Vahid Shahrezaei

AbstractThe cell division rate, size, and gene expression programmes change in response to external conditions. These global changes impact on average concentrations of biomolecule and their variability or noise. Gene expression is inherently stochastic, and noise levels of individual proteins depend on synthesis and degradation rates as well as on cell-cycle dynamics. We have modelled stochastic gene expression inside growing and dividing cells to study the effect of division rates on noise in mRNA and protein expression. We use assumptions and parameters relevant to Escherichia coli, for which abundant quantitative data are available. We find that coupling of transcription, but not translation rates to the rate of cell division can result in protein concentration and noise homeostasis across conditions. Interestingly, we find that the increased cell size at fast division rates, observed in E. coli d other unicellular organisms, buffers noise levels even for proteins with decreased expression at faster growth. We then investigate the functional importance of these regulations using gene regulatory networks that exhibit bi-stability and oscillations. We find that network topology affects robustness to changes in division rate in complex and unexpected ways. In particular, a simple model of persistence, based on global physiological feedback, predicts increased proportion of persistors cells at slow division rates. Altogether, our study reveals how cell size regulation in response to cell division rate could help controlling gene expression noise. It also highlights that understanding of circuits’ robustness across growth conditions is key for the effective design of synthetic biological systems.


2014 ◽  
Vol 164 (4) ◽  
pp. 1718-1730 ◽  
Author(s):  
Cecilio F. Caldeira ◽  
Mickael Bosio ◽  
Boris Parent ◽  
Linda Jeanguenin ◽  
François Chaumont ◽  
...  

2018 ◽  
Vol 5 (3) ◽  
pp. 172234 ◽  
Author(s):  
François Bertaux ◽  
Samuel Marguerat ◽  
Vahid Shahrezaei

The cell division rate, size and gene expression programmes change in response to external conditions. These global changes impact on average concentrations of biomolecule and their variability or noise. Gene expression is inherently stochastic, and noise levels of individual proteins depend on synthesis and degradation rates as well as on cell-cycle dynamics. We have modelled stochastic gene expression inside growing and dividing cells to study the effect of division rates on noise in mRNA and protein expression. We use assumptions and parameters relevant to Escherichia coli , for which abundant quantitative data are available. We find that coupling of transcription, but not translation rates to the rate of cell division can result in protein concentration and noise homeostasis across conditions. Interestingly, we find that the increased cell size at fast division rates, observed in E. coli and other unicellular organisms, buffers noise levels even for proteins with decreased expression at faster growth. We then investigate the functional importance of these regulations using gene regulatory networks that exhibit bi-stability and oscillations. We find that network topology affects robustness to changes in division rate in complex and unexpected ways. In particular, a simple model of persistence, based on global physiological feedback, predicts increased proportion of persister cells at slow division rates. Altogether, our study reveals how cell size regulation in response to cell division rate could help controlling gene expression noise. It also highlights that understanding circuits' robustness across growth conditions is key for the effective design of synthetic biological systems.


Sign in / Sign up

Export Citation Format

Share Document