scholarly journals Disposition of magmatic eruptions and fault distribution in northwestern Saudi Arabia using pseudo-depth slice magnetic anomaly

2021 ◽  
Vol 18 (4) ◽  
pp. 463-481
Author(s):  
Elkhedr Ibrahim ◽  
Mohamed Arfaoui ◽  
Saad Mogren ◽  
Saleh Qaysi ◽  
Aref Lashin ◽  
...  

Abstract This study presents the disposition of magmatic eruptions with a fault distribution in northwestern Saudi Arabia, where intensive magma invades the lithosphere. Structural and magmatic features are traced at successive depths through high-resolution magnetic anomaly pseudo-depth slices. The total horizontal gradient technique is applied to pseudo-depth slice magnetic anomalies to enhance the linear trends of faults and related magmatic activity. A comprehensive cross-section constructed from the projection of gradient horizontal maxima relative to pseudo-slices allows the visualization of the vertical behavior of faults and magma sources. Three major fault systems were identified, primarily aligned in the N–S, NE–SW and NW–SE directions. They are characterized by increasing length and width with depth. The N-S fault system is a major non-planar deep system throughout the area, affected by the NW–SE and NE–SW deep discontinuities. The evolution of these discontinuities with depth successfully shows magma uprising zones represented by a circular horizontal gradient, which starts to appear at a depth of 4500 m with a vertical continuity to the surface. They are interpreted as possible locations of ascending magma chambers or vents. The disposition of these magma sources with fault distribution can show a close relationship between the fault systems and the magma eruptions. The interpreted magma vents appear where the NE-trending transform faults intersect the NW or N–S fault zone. These intersections may represent weak zones that act as vertical conduits through which magma discontinuously erupts into the overlying crust, forming major volcanic fields in the eastern Red Sea.

Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1499
Author(s):  
Davide Fronzi ◽  
Francesco Mirabella ◽  
Carlo Cardellini ◽  
Stefano Caliro ◽  
Stefano Palpacelli ◽  
...  

The interaction between fluids and tectonic structures such as fault systems is a much-discussed issue. Many scientific works are aimed at understanding what the role of fault systems in the displacement of deep fluids is, by investigating the interaction between the upper mantle, the lower crustal portion and the upraising of gasses carried by liquids. Many other scientific works try to explore the interaction between the recharge processes, i.e., precipitation, and the fault zones, aiming to recognize the function of the abovementioned structures and their capability to direct groundwater flow towards preferential drainage areas. Understanding the role of faults in the recharge processes of punctual and linear springs, meant as gaining streams, is a key point in hydrogeology, as it is known that faults can act either as flow barriers or as preferential flow paths. In this work an investigation of a fault system located in the Nera River catchment (Italy), based on geo-structural investigations, tracer tests, geochemical and isotopic recharge modelling, allows to identify the role of the normal fault system before and after the 2016–2017 central Italy seismic sequence (Mmax = 6.5). The outcome was achieved by an integrated approach consisting of a structural geology field work, combined with GIS-based analysis, and of a hydrogeological investigation based on artificial tracer tests and geochemical and isotopic analyses.


2021 ◽  
pp. 1-18
Author(s):  
Shehata Ali ◽  
Abdullah S. Alshammari

Abstract The Arabian Shield of Saudi Arabia represents part of the Arabian–Nubian Shield and forms an exposure of juvenile continental crust on the eastern side of the Red Sea rift. Gabbroic intrusions in Saudi Arabia constitute a significant part of the mafic magmatism in the Neoproterozoic Arabian Shield. This study records the first detailed geological, mineralogical and geochemical data for gabbroic intrusions located in the Gabal Samra and Gabal Abd areas of the Hail region in the Arabian Shield of Saudi Arabia. Geological field relations and investigations, supported by mineralogical and geochemical data, indicate that the gabbroic intrusions are generally unmetamorphosed and undeformed, and argue for their post-collisional emplacement. Their mineralogical and geochemical features reveal crystallization from hydrous, mainly tholeiitic, mafic magmas with arc-like signatures, which were probably inherited from the previous subduction event in the Arabian–Nubian Shield. The gabbroic rocks exhibit sub-chondritic Nb/U, Nb/Ta and Zr/Hf ratios, revealing depletion of their mantle source. Moreover, the high ratios of (Gd/Yb)N and (Dy/Yb)N indicate that their parental mafic melts were derived from a garnet-peridotite source with a garnet signature in the mantle residue. This implication suggests that the melting region was at a depth exceeding ∼70–80 km at the garnet stability field. They have geochemical characteristics similar to other post-collisional gabbros of the Arabian–Nubian Shield. Their origin could be explained by adiabatic decompression melting of depleted asthenosphere that interacted during ascent with metasomatized lithospheric mantle in an extensional regime, likely related to the activity of the Najd Fault System, at the end of the Pan-African Orogeny.


2020 ◽  
Vol 12 (1) ◽  
pp. 851-865
Author(s):  
Sukonmeth Jitmahantakul ◽  
Piyaphong Chenrai ◽  
Pitsanupong Kanjanapayont ◽  
Waruntorn Kanitpanyacharoen

AbstractA well-developed multi-tier polygonal fault system is located in the Great South Basin offshore New Zealand’s South Island. The system has been characterised using a high-quality three-dimensional seismic survey tied to available exploration boreholes using regional two-dimensional seismic data. In this study area, two polygonal fault intervals are identified and analysed, Tier 1 and Tier 2. Tier 1 coincides with the Tucker Cove Formation (Late Eocene) with small polygonal faults. Tier 2 is restricted to the Paleocene-to-Late Eocene interval with a great number of large faults. In map view, polygonal fault cells are outlined by a series of conjugate pairs of normal faults. The polygonal faults are demonstrated to be controlled by depositional facies, specifically offshore bathyal deposits characterised by fine-grained clays, marls and muds. Fault throw analysis is used to understand the propagation history of the polygonal faults in this area. Tier 1 and Tier 2 initiate at about Late Eocene and Early Eocene, respectively, based on their maximum fault throws. A set of three-dimensional fault throw images within Tier 2 shows that maximum fault throws of the inner polygonal fault cell occurs at the same age, while the outer polygonal fault cell exhibits maximum fault throws at shallower levels of different ages. The polygonal fault systems are believed to be related to the dewatering of sedimentary formation during the diagenesis process. Interpretation of the polygonal fault in this area is useful in assessing the migration pathway and seal ability of the Eocene mudstone sequence in the Great South Basin.


2016 ◽  
Vol 87 (4) ◽  
pp. 469-475 ◽  
Author(s):  
Taisser Zumlot ◽  
Awni Batayneh ◽  
Haider Zaman ◽  
Habes Ghrefat ◽  
Saad Mogren ◽  
...  

2012 ◽  
Vol 56 (1) ◽  
pp. 165-174 ◽  
Author(s):  
Khalid AL-RAMADAN ◽  
Ahmet Umran DOGAN ◽  
Muhittin SENALP

2021 ◽  
Author(s):  
Valentina Galluzzi ◽  
Luigi Ferranti ◽  
Lorenza Giacomini ◽  
Pasquale Palumbo

<p>The Discovery quadrangle of Mercury (H-11) located in the area between 22.5°S–65°S and 270°E–360°E encompasses structures of paramount importance for understanding Mercury’s tectonics. The quadrangle is named after Discovery Rupes, a NE-SW trending lobate scarp, which is one of the longest and highest on Mercury (600 km in length and 2 km high). By examining the existing maps of this area (Trask and Dzurisin, 1984; Byrne et al., 2014), several other oblique trending structures are visible. More mapping detail could be achieved by using the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) Mercury Dual Imaging System (MDIS) imagery.</p> <p>We aim at mapping the structures of H-11 at high-resolution by using MESSENGER/MDIS basemaps, in order to understand its regional tectonic history by following the work done in the Victoria quadrangle (H-2) (Galluzzi et al., 2019). Differently from H-2, located in the same longitudinal range but at opposite latitudes, this area lacks in N-S trending scarps, such as the Victoria-Endeavour-Antoniadi fault system, which dominates the northern hemisphere structural framework. The existing tectonic theories predict either an isotropic pattern of faults (global contraction) or an ordered distribution and orientation of faults (tidal despinning) for Mercury. If we expect that the existing tectonic patterns were governed by only one of the two processes or both together, it is difficult to understand how such different trends formed within these two complementary areas. The structural study done for H-2 reveals that the geochemical discontinuities present in Mercury’s crust may have guided and influenced the trend and kinematics of faults in that area (Galluzzi et al., 2019). In particular, the high-magnesium region seems to be associated with fault systems that either follow its boundary or are located within it. These fault systems show distinct kinematics and trends. The south-eastern border of the HMR is located within H-11. Hence, with this study, we aim at complementing the previous one to better describe the tectonics linked to the presence of the HMR. Furthermore, this geostructural map will complement the future geomorphological map of the area and will be part of the 1:3M quadrangle geological map series which are being prepared in view of the BepiColombo mission (Galluzzi, 2019). <em>Acknowledgments: We gratefully acknowledge funding from the Italian Space Agency (ASI) under ASI-INAF agreement 2017-47-H.0.</em></p> <p>Byrne et al. (2014). Nature Geoscience, 7(4), 301-307.<br />Galluzzi, V. (2019). In: Planetary Cartography and GIS, Springer, Cham, 207-218.<br />Galluzzi et al. (2019). Journal of Geophysical Research: Planets, 124(10), 2543-2562.<br />Trask and Dzurisin (1984). USGS, IMAP 1658.</p>


Sign in / Sign up

Export Citation Format

Share Document