scholarly journals Genomic Footprints of Recovery in the European Bison

2020 ◽  
Author(s):  
Tom Druet ◽  
Kamil Oleński ◽  
Laurence Flori ◽  
Amandine R Bertrand ◽  
Wanda Olech ◽  
...  

Abstract After extinction in the wild in the beginning of the 20th century, the European bison has been successfully recovered in 2 distinct genetic lines from only 12 and 7 captive founders. We here aimed at characterizing the levels of realized inbreeding in these 2 restored lines to provide empirical insights into the genomic footprints left by population recovery from a small number of founders. To that end, we genotyped 183 European bison born over the last 40 years with the Illumina BovineHD beadchip that contained 22 602 informative autosomal single-nucleotide polymorphisms after data filtering. We then identified homozygous-by-descent (HBD) segments and classified them into different age-related classes relying on a model-based approach. As expected, we observed that the strong and recent founder effect experienced by the 2 lines resulted in very high levels of recent inbreeding and in the presence of long HBD tracks (up to 120 Mb). These long HBD tracks were associated with ancestors living approximately from 4 to 32 generations in the past, suggesting that inbreeding accumulated over multiple generations after the bottleneck. The contribution to inbreeding of the most recent groups of ancestors was however found to be decreasing in both lines. In addition, comparison of Lowland individuals born at different time periods showed that the levels of inbreeding tended to stabilize, HBD segments being shorter in animals born more recently which indicates efficient control of inbreeding. Monitoring HBD segment lengths over generations may thus be viewed as a valuable genomic diagnostic tool for populations in conservation or recovery programs.

2021 ◽  
pp. 112067212110026
Author(s):  
Pablo Gili ◽  
Leyre Lloreda Martín ◽  
José-Carlos Martín-Rodrigo ◽  
Naon Kim-Yeon ◽  
Laura Modamio-Gardeta ◽  
...  

Purpose: To identify the association between single-nucleotide polymorphisms (SNPs) in CFH, ARMS2, HTRA1, CFB, C2, and C3 genes and exudative age-related macular degeneration (AMD) in a Spanish population. Methods: In 187 exudative AMD patients and 196 healthy controls (61% women, mean age 75 years), 12 SNPs as risk factors for AMD in CFH (rs1410996, rs1061170, r380390), ARMS2 (rs10490924, rs10490923), HTRA1 (rs11200638), CFB (rs641153), C2 (rs547154, rs9332739), and C3 (rs147859257, rs2230199, rs1047286) genes were analyzed. Results: The G allele was the most frequent in CFH gene (rs1410996) with a 7-fold increased risk of AMD (OR 7.69, 95% CI 3.17–18.69), whereas carriers of C allele in CFH (rs1061170) showed a 3-fold increased risk for AMD (OR 3.22, 95% CI 1.93–5.40). In CFH (rs380390), the presence of G allele increased the risk for AMD by 2-fold (OR 2.52, 95% CI 1.47–4.30). In ARMS2 (rs10490924), the T-allele was associated with an almost 5-fold increased risk (OR 5.49, 95% CI 3.23–9.31). The A allele in HTRA1 (rs11200638) was more prevalent in AMD versus controls (OR 6.44, 95% CI 3.62–11.47). In C2 gene (rs9332739) the presence of C increased risk for AMD by 3-fold (OR 3.10, 95% CI 1.06–9.06). Conclusion: SNPs in CFH, ARMS2, HTRA1, and C2 genes were associated in our study with an increased risk for exudative AMD in Spanish patients.


PLoS ONE ◽  
2012 ◽  
Vol 7 (11) ◽  
pp. e49905 ◽  
Author(s):  
Akshay Anand ◽  
Neel Kamal Sharma ◽  
Amod Gupta ◽  
Sudesh Prabhakar ◽  
Suresh Kumar Sharma ◽  
...  

2010 ◽  
Vol 74 (3) ◽  
pp. 195-201 ◽  
Author(s):  
Juan A. Ayala-Haedo ◽  
Paul J. Gallins ◽  
Patrice L. Whitehead ◽  
Stephen G. Schwartz ◽  
Jaclyn L. Kovach ◽  
...  

PLoS ONE ◽  
2012 ◽  
Vol 7 (12) ◽  
pp. e51571 ◽  
Author(s):  
Yongshuai Jiang ◽  
Ruijie Zhang ◽  
Jiajia Zheng ◽  
Panpan Liu ◽  
Guoping Tang ◽  
...  

2021 ◽  
Vol 11 ◽  
Author(s):  
Huitong Chen ◽  
Qian Guan ◽  
Huiqin Guo ◽  
Lei Miao ◽  
Zhenjian Zhuo

Hepatoblastoma is the most common malignant liver cancer in childhood. The etiology of hepatoblastoma remains obscure. Hepatoblastoma is closely related to genetic syndromes, hinting that hepatoblastoma is a genetic predisposition disease. However, no precise exposures or genetic events are reported to hepatoblastoma occurrence. During the past decade, significant advances have been made in the understanding of etiology leading to hepatoblastoma, and several important genetic events that appear to be important for the development and progression of this tumor have been identified. Advances in our understanding of the genetic changes that underlie hepatoblastoma may translate into better patient outcomes. Single nucleotide polymorphisms (SNPs) have been generally applied in the research of etiology’s exploration, disease treatment, and prognosis assessment. Here, we reviewed and discussed the molecular epidemiology, especially SNPs progresses in hepatoblastoma, to provide references for future studies and promote the study of hepatoblastoma’s etiology.


Sign in / Sign up

Export Citation Format

Share Document