scholarly journals Inverse Medea as a Novel Gene Drive System for Local Population Replacement: A Theoretical Analysis

2011 ◽  
Vol 102 (3) ◽  
pp. 336-341 ◽  
Author(s):  
J. M. Marshall ◽  
B. A. Hay
2020 ◽  
Author(s):  
Frederik J.H. de Haas ◽  
Sarah P. Otto

1AbstractEngineered gene drive techniques for population replacement and/or suppression have potential for tackling complex challenges, including reducing the spread of diseases and invasive species. Unfortunately, the self-propelled behavior of drives can lead to the spread of transgenic elements beyond the target population, which is concerning. Gene drive systems with a low threshold frequency for invasion, such as homing-based gene drive systems, require initially few transgenic individuals to spread and are therefore easy to implement. However their ease of spread presents a double-edged sword; their low threshold makes these drives much more susceptible to spread outside of the target population (spillover). We model a proposed drive system that transitions in time from a low threshold drive system (homing-based gene drive) to a high threshold drive system (underdominance) using daisy chain technology. This combination leads to a spatially restricted drive strategy, while maintaining an attainable release threshold. We develop and analyze a discrete-time model as proof of concept and find that this technique effectively generates stable local population suppression, while preventing the spread of transgenic elements beyond the target population under biologically realistic parameters.


2021 ◽  
Author(s):  
William R Reid ◽  
Jingyi Lin ◽  
Adeline E Williams ◽  
Rucsanda Juncu ◽  
Ken E Olson ◽  
...  

The yellow fever mosquito Aedes aegypti is a major vector of arthropod-borne viruses, including dengue, chikungunya, and Zika. A novel approach to mitigate arboviral infections is to generate mosquitoes refractory to infection by overexpressing antiviral effector molecules. Such an approach requires a mechanism to spread these antiviral effectors through a population, for example, by using CRISPR/Cas9-based gene drive systems. Here we report an autonomous single-component gene drive system in Ae. aegypti that is designed for persistent population replacement. Critical to the design of a single-locus autonomous gene drive is that the selected genomic locus be amenable to both gene drive and the appropriate expression of the antiviral effector. In our study, we took a reverse engineering approach to target two genomic loci ideal for the expression of antiviral effectors and further investigated the use of three promoters for Cas9 expression (nanos, β2-tubulin, or zpg) for the gene drive. We found that both promoter selection and genomic target site strongly influenced the efficiency of the drive, resulting in 100% inheritance in some crosses. We also observed the formation of inheritable gene drive blocking indels (GDBI) in the genomic locus with the highest levels of gene drive. Overall, our drive system forms a platform for the further testing of driving antipathogen effector genes through Ae. aegypti populations.


2019 ◽  
Author(s):  
Sophia H. Webster ◽  
Michael R. Vella ◽  
Maxwell J. Scott

AbstractWe report the development and laboratory testing of a novel Killer-Rescue (K-R) self-limiting gene drive system in Drosophila melanogaster. This K-R system utilizes the well-characterized Gal4/UAS binary expression system and the Gal4 inhibitor, Gal80. Three killer (K) lines were tested; these used either an autoregulated UAS-Gal4 or UAS-Gal4 plus UAS-hid transgene. One universal rescue (R) line was used, UAS-Gal80, to inhibit Gal4 expression. The K lines are lethal and cause death in the absence of R. We show that Gal4 RNA levels are high in the absence of R. Death is possibly due to transcriptional squelching from high levels of Gal4. When R is present, Gal4 activation of Gal80 would lead to inhibition of Gal4 and prevent overexpression. With a single release ratio of 2:1 engineered K-R to wildtype, we find that K drives R through the population while the percent of wild type individuals decreases each generation. The choice of core promoter for a UAS-Gal4 construct strongly influences the K-R system. With the strong hsp70 core promoter, K was very effective but was quickly lost from the population. With the weaker DSCP core promoter, K persisted for longer allowing the frequency of individuals with at least one copy of R to increase to over 98%. This simple gene drive system could be readily adapted to other species such as mosquito disease vectors for driving anti-viral or anti-parasite genes.SignificanceHere we report the development and testing of a novel self-limiting gene drive system, Killer-Rescue, in Drosophila melanogaster. This system is composed of an auto-regulated Gal4 Killer (K) and a Gal4-activated Gal80 Rescue (R). Overexpression of Gal4 is lethal but in the presence of R, activation of Gal80 leads to much lower levels of Gal4 and rescue of lethality. We demonstrate that with a single 2:1 engineered to wildtype release, more than 98% of the population carry R after eight generations. We discuss how this Killer-Rescue system may be used for population replacement in a human health pest, Aedes aegypti, or for population suppression in an agricultural pest, Drosophila suzukii.


2020 ◽  
Vol 287 (1925) ◽  
pp. 20192994 ◽  
Author(s):  
Sophia H. Webster ◽  
Michael R. Vella ◽  
Maxwell J. Scott

Here we report the development and testing of a novel self-limiting gene drive system, Killer–Rescue (K–R), in Drosophila melanogaster . This system is composed of an autoregulated Gal4 Killer (K) and a Gal4-activated Gal80 Rescue (R). Overexpression of Gal4 is lethal, but in the presence of R activation of Gal80 leads to much lower levels of Gal4 and rescue of lethality. We demonstrate that with a single 2 : 1 engineered to wild-type release, K drives R through the population and after nine generations, more than 98% of the population carry R and less than 2% of the population are wild-type flies. We discuss how this simple K–R gene drive system may be readily adapted for population replacement in a human health pest, Aedes aegypti , or for population suppression in an agricultural pest, Drosophila suzukii .


PLoS ONE ◽  
2014 ◽  
Vol 9 (7) ◽  
pp. e102694 ◽  
Author(s):  
John M. Marshall ◽  
Bruce A. Hay

2017 ◽  
Author(s):  
John Min ◽  
Charleston Noble ◽  
Devora Najjar ◽  
Kevin M. Esvelt

AbstractAn ideal gene drive system to alter wild populations would 1) exclusively affect organisms within the political boundaries of consenting communities, and 2) be capable of restoring any engineered population to its original genetic state. Here we describe ‘daisy quorum’ drive systems that meet these criteria by combining daisy drive with underdominance. A daisy quorum drive system is predicted to spread through a population until all of its daisy elements have been lost, at which point its fitness becomes frequency-dependent: mostly altered populations become fixed for the desired change, while engineered genes at low frequency are swiftly eliminated by natural selection. The result is an engineered population surrounded by wild-type organisms with limited mixing at the boundary. Releasing large numbers of wild-type organisms or a few bearing a population suppression element can reduce the engineered population below the quorum, triggering elimination of all engineered sequences. In principle, the technology can restore any drive-amenable population carrying engineered genes to wild-type genetics. Daisy quorum systems may enable efficient, community-supported, and genetically reversible ecological engineering.SummaryLocal communities should be able to control their own environments without forcing those choices on others. Ideally, each community could reversibly alter local wild organisms in ways that cannot spread beyond their own boundaries, and any engineered population could be restored to its original genetic state. We've invented a 'daisy quorum' drive system that appears to meet these criteria.“Daisy” refers to a daisy drive, which typically uses a daisy-chain of linked genes to spread a change through a local population while losing links every generation until it stops spreading. “Quorum” reflects the system's ability to “vote” on whether a local population should be altered or not: once all daisy elements are lost, it favors replication by the altered version or the original depending on which is more abundant in the local area. Put together, they result in a change that first spreads through a local population, then either becomes locally prevalent is eliminating, inhibiting mixing at the boundary. All organisms in the target population are altered, but changes are unable to spread much beyond that area due to being greatly outnumbered by wild-type organisms and consequently less able to replicate.We haven't yet performed any experiments involving daisy quorum systems. Rather, we’re describing what we intend to do, including the safeguards we will use and our assessment of risks, in the hope that others will evaluate our plans and tell us if there's anything wrong that we missed. We hope that all researchers working on gene drive systems - and other technologies that could impact the shared environment - will similarly pre-register their plans. Sharing plans can reduce needless duplication, accelerate progress, and make the proposed work safer for everyone.


Author(s):  
Simone Cinquemani ◽  
Hermes Giberti ◽  
Giovanni Legnani

Manipulator kinetostatic performances are usually investigated considering only the geometrical structure of the robot, neglecting the effect of the drive system. In some circumstances this approach may leads to errors and mistakes. This may happen if the actuators are not identical to each other or when the employed transmission ratio are not identical and/or not constant. The paper introduces the so called “Generalized Jacobian Matrix” obtained identifying an appropriate matrix, generally diagonal, defined in order to: 1. properly weigh the different contributions of speed and force of each actuator. 2. describe the possible non-homogeneous behaviour of the drive system that depends on the configuration achieved by the robot. Theoretical analysis is supported by examples highlighting some of the most common mistakes done in the evaluation of a manipulator kinetostatic properties and how they can be avoided using the generalized jacobian matrix.


2016 ◽  
Vol 34 (1) ◽  
pp. 78-83 ◽  
Author(s):  
Andrew Hammond ◽  
Roberto Galizi ◽  
Kyros Kyrou ◽  
Alekos Simoni ◽  
Carla Siniscalchi ◽  
...  

2018 ◽  
Author(s):  
Alexander Nash ◽  
Giulia Mignini Urdaneta ◽  
Andrea K. Beaghton ◽  
Astrid Hoermann ◽  
Philippos Aris Papathanos ◽  
...  

AbstractFirst generation CRISPR-based gene drives have now been tested in the laboratory in a number of organisms including malaria vector mosquitoes. A number of challenges for their use in the area-wide genetic control of vector-borne disease have been identified. These include the development of target site resistance, their long-term efficacy in the field, their molecular complexity, and the practical and legal limitations for field testing of both gene drive and coupled anti-pathogen traits. To address these challenges, we have evaluated the concept of Integral Gene Drive (IGD) as an alternative paradigm for population replacement. IGDs incorporate a minimal set of molecular components, including both the drive and the anti-pathogen effector elements directly embedded within endogenous genes – an arrangement which we refer to as gene “hijacking”. This design would allow autonomous and non-autonomous IGD traits and strains to be generated, tested, optimized, regulated and imported independently. We performed quantitative modelling comparing IGDs with classical replacement drives and show that selection for the function of the hijacked host gene can significantly reduce the establishment of resistant alleles in the population while hedging drive over multiple genomic loci prolongs the duration of transmission blockage in the face of pre-existing target-site variation. IGD thus has the potential to yield more durable and flexible population replacement traits.


Sign in / Sign up

Export Citation Format

Share Document