scholarly journals Genetic Diversity and Population Structure of Wild Sunflower (Helianthus annuus L.) in Argentina: Reconstructing Its Invasion History

2019 ◽  
Vol 110 (6) ◽  
pp. 746-759 ◽  
Author(s):  
Fernando Hernández ◽  
Alejandro Presotto ◽  
Mónica Poverene ◽  
Jennifer R Mandel

Abstract Studying the levels and patterns of genetic diversity of invasive populations is important to understand the evolutionary and ecological factors promoting invasions and for better designing preventive and control strategies. Wild sunflower (Helianthus annuus L.) is native to North America and was introduced, and has become invasive, in several countries, including Argentina (ARG). Here, using classical population genetic analyses and approximate Bayesian computation (ABC) modeling, we studied the invasion history of wild sunflower in ARG. We analyzed 115 individuals belonging to 15 populations from ARG (invasive range) and United States (US, native range) at 14 nuclear and 3 chloroplast simple sequence repeat markers along with 23 phenotypic variables. Populations from ARG showed similar levels of nuclear genetic diversity to US populations and higher genetic diversity in the chloroplast genome, indicating no severe genetic bottlenecks during the invasion process. Bayesian clustering analysis, based on nuclear markers, suggests the presence of 3 genetic clusters, all present in both US and ARG. Discriminant analysis of principal components (DAPC) detected an overall low population structure between central US and ARG populations but separated 2 invasive populations from the rest. ABC modeling supports multiple introductions but also a southward dispersal within ARG. Genetic and phenotypic data support the central US as a source of introduction while the source of secondary introductions could not be resolved. Finally, using genetic markers from the chloroplast genome, we found lower population structure in ARG when compared with US populations, suggesting a role for seed-mediated gene flow in Argentina.

2016 ◽  
Vol 19 (1) ◽  
pp. 37-44 ◽  
Author(s):  
Marjan Jannatdoust ◽  
Reza Darvishzadeh ◽  
Roghayyeh Ziaeifard ◽  
Mohammad Ali Ebrahimi ◽  
Hamid Hatami Maleki ◽  
...  

Agronomy ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 118
Author(s):  
Ljiljana Brbaklić ◽  
Dragana Trkulja ◽  
Sanja Mikić ◽  
Milan Mirosavljević ◽  
Vojislava Momčilović ◽  
...  

Determination of genetic diversity and population structure of breeding material is an important prerequisite for discovering novel and valuable alleles aimed at crop improvement. This study’s main objective was to characterize genetic diversity and population structure of a collection representing a 40-year long historical period of barley (Hordeum vulgare L.) breeding, using microsatellites, pedigree, and phenotypic data. The set of 90 barley genotypes was phenotyped during three growing seasons and genotyped with 338 polymorphic alleles. The indicators of genetic diversity showed differentiation changes throughout the breeding periods. The population structure discriminated the breeding material into three distinctive groups. The principal coordinate analysis grouped the genotypes according to their growth habit and row type. An analysis of phenotypic variance (ANOVA) showed that almost all investigated traits varied significantly between row types, seasons, and breeding periods. A positive effect on yield progress during the 40-year long breeding period could be partly attributed to breeding for shorter plants, which reduced lodging and thus provided higher yield stability. The breeding material revealed a considerable diversity level based on microsatellite and phenotypic data without a tendency of genetic erosion throughout the breeding history and implied dynamic changes in genetic backgrounds, providing a great gene pool suitable for further barley improvement.


Helia ◽  
2001 ◽  
Vol 24 (34) ◽  
pp. 17-24
Author(s):  
K. Manjula ◽  
H.L. Nadaf ◽  
K. Giriraj

SUMMARYGenetic diversity was assessed in 46 non-oilseed sunflower genotypes for 14 characters by adopting D2 analysis. Oil content and plant height exhibited maximum contributions towards genetic divergence. The genotypes were grouped into 11 clusters. The inter-cluster D2 values ranged from 288.17 to 3972.34. The contribution of oil content towards genetic divergence in the 46 genotypes was confirmed when D2 analysis was performed for seed characteristics such as test weight, volume weight, hull content, kernel recovery, oil and protein content.


Author(s):  
Jay Jay Ram ◽  
U.K. Singh ◽  
S.K. Singh ◽  
Bal Krishna

2020 ◽  
Author(s):  
Pamela Vega-Polo ◽  
Maria M. Cobo ◽  
Andrea Argudo ◽  
Bernardo Gutierrez ◽  
Jennifer Rowntree ◽  
...  

AbstractThe Ecuadorian páramo, a high altitude tundra-like ecosystem, is a unique source of various ecosystem services and distinct biodiversity. Anthropogenic activities are associated with its fragmentation, which alters ecological factors and directly threatens resident species. Vaccinium floribundum Kunth., commonly known as Andean blueberry or mortiño, is a wild shrub endemic to the Andean region and highly valued in Ecuador for its berries, which are widely used in food preparations and hold an important cultural value. Since it is a wild species, mortiño could be vulnerable to environmental changes, resulting in a reduction of the size and distribution of its populations. To evaluate the extent of these effects on the mortiño populations, we assessed the genetic diversity and population structure of the species along the Ecuadorian highlands. We designed and developed a set of 30 homologous SSR markers and used 16 of these to characterize 100 mortiño individuals from 27 collection sites. Our results revealed a high degree of genetic diversity (HE=0.73) for the Ecuadorian mortiño, and a population structure analyses suggested the existence of distinct genetic clusters present in the northern, central and southern highlands. A fourth, clearly differentiated cluster was also found and included individuals from locations at higher elevations. We suggest that the population structure of the species could be explained by an isolation-by-distance model and can be associated to the geological history of the Andean region. Our results suggest that elevation could also be a key factor in the differentiation of mortiño populations. This study provides an extensive overview of the species across its distribution range in Ecuador, contributing to a better understanding of its conservation status. These results can assist the development of conservation programs for this valuable biological and cultural resource and for the páramo ecosystems as a whole.


2016 ◽  
Vol 2 (2) ◽  
pp. 15-32 ◽  
Author(s):  
Fatemeh Sahranavard Azartamar ◽  
Mortaza Ghadimzadeh ◽  
Reza Darvishzadeh ◽  
◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document