scholarly journals ‘Sometime a paradox’, now proof: Yablo is not first order

2020 ◽  
Author(s):  
Saeed Salehi

Abstract   Interesting as they are by themselves in philosophy and mathematics, paradoxes can be made even more fascinating when turned into proofs and theorems. For example, Russell’s paradox, which overthrew Frege’s logical edifice, is now a classical theorem in set theory, to the effect that no set contains all sets. Paradoxes can be used in proofs of some other theorems—thus Liar’s paradox has been used in the classical proof of Tarski’s theorem on the undefinability of truth in sufficiently rich languages. This paradox (as well as Richard’s paradox) appears implicitly in Gödel’s proof of his celebrated first incompleteness theorem. In this paper, we study Yablo’s paradox from the viewpoint of first- and second-order logics. We prove that a formalization of Yablo’s paradox (which is second order in nature) is non-first-orderizable in the sense of George Boolos (1984).   This was sometime a paradox, but now the time gives it proof.  —William Shakespeare (Hamlet, Act 3, Scene 1).

Author(s):  
Tim Button ◽  
Sean Walsh

In this chapter, the focus shifts from numbers to sets. Again, no first-order set theory can hope to get anywhere near categoricity, but Zermelo famously proved the quasi-categoricity of second-order set theory. As in the previous chapter, we must ask who is entitled to invoke full second-order logic. That question is as subtle as before, and raises the same problem for moderate modelists. However, the quasi-categorical nature of Zermelo's Theorem gives rise to some specific questions concerning the aims of axiomatic set theories. Given the status of Zermelo's Theorem in the philosophy of set theory, we include a stand-alone proof of this theorem. We also prove a similar quasi-categoricity for Scott-Potter set theory, a theory which axiomatises the idea of an arbitrary stage of the iterative hierarchy.


2010 ◽  
Vol 16 (1) ◽  
pp. 1-36 ◽  
Author(s):  
Peter Koellner

AbstractIn this paper we investigate strong logics of first and second order that have certain absoluteness properties. We begin with an investigation of first order logic and the strong logics ω-logic and β-logic, isolating two facets of absoluteness, namely, generic invariance and faithfulness. It turns out that absoluteness is relative in the sense that stronger background assumptions secure greater degrees of absoluteness. Our aim is to investigate the hierarchies of strong logics of first and second order that are generically invariant and faithful against the backdrop of the strongest large cardinal hypotheses. We show that there is a close correspondence between the two hierarchies and we characterize the strongest logic in each hierarchy. On the first-order side, this leads to a new presentation of Woodin's Ω-logic. On the second-order side, we compare the strongest logic with full second-order logic and argue that the comparison lends support to Quine's claim that second-order logic is really set theory in sheep's clothing.


Author(s):  
Wilfried Sieg

Proof theory is a branch of mathematical logic founded by David Hilbert around 1920 to pursue Hilbert’s programme. The problems addressed by the programme had already been formulated, in some sense, at the turn of the century, for example, in Hilbert’s famous address to the First International Congress of Mathematicians in Paris. They were closely connected to the set-theoretic foundations for analysis investigated by Cantor and Dedekind – in particular, to difficulties with the unrestricted notion of system or set; they were also related to the philosophical conflict with Kronecker on the very nature of mathematics. At that time, the central issue for Hilbert was the ‘consistency of sets’ in Cantor’s sense. Hilbert suggested that the existence of consistent sets, for example, the set of real numbers, could be secured by proving the consistency of a suitable, characterizing axiom system, but indicated only vaguely how to give such proofs model-theoretically. Four years later, Hilbert departed radically from these indications and proposed a novel way of attacking the consistency problem for theories. This approach required, first of all, a strict formalization of mathematics together with logic; then, the syntactic configurations of the joint formalism would be considered as mathematical objects; finally, mathematical arguments would be used to show that contradictory formulas cannot be derived by the logical rules. This two-pronged approach of developing substantial parts of mathematics in formal theories (set theory, second-order arithmetic, finite type theory and still others) and of proving their consistency (or the consistency of significant sub-theories) was sharpened in lectures beginning in 1917 and then pursued systematically in the 1920s by Hilbert and a group of collaborators including Paul Bernays, Wilhelm Ackermann and John von Neumann. In particular, the formalizability of analysis in a second-order theory was verified by Hilbert in those very early lectures. So it was possible to focus on the second prong, namely to establish the consistency of ‘arithmetic’ (second-order number theory and set theory) by elementary mathematical, ‘finitist’ means. This part of the task proved to be much more recalcitrant than expected, and only limited results were obtained. That the limitation was inevitable was explained in 1931 by Gödel’s theorems; indeed, they refuted the attempt to establish consistency on a finitist basis – as soon as it was realized that finitist considerations could be carried out in a small fragment of first-order arithmetic. This led to the formulation of a general reductive programme. Gentzen and Gödel made the first contributions to this programme by establishing the consistency of classical first-order arithmetic – Peano arithmetic (PA) – relative to intuitionistic arithmetic – Heyting arithmetic. In 1936 Gentzen proved the consistency of PA relative to a quantifier-free theory of arithmetic that included transfinite recursion up to the first epsilon number, ε0; in his 1941 Yale lectures, Gödel proved the consistency of the same theory relative to a theory of computable functionals of finite type. These two fundamental theorems turned out to be most important for subsequent proof-theoretic work. Currently it is known how to analyse, in Gentzen’s style, strong subsystems of second-order arithmetic and set theory. The first prong of proof-theoretic investigations, the actual formal development of parts of mathematics, has also been pursued – with a surprising result: the bulk of classical analysis can be developed in theories that are conservative over (fragments of) first-order arithmetic.


1983 ◽  
Vol 48 (4) ◽  
pp. 1013-1034
Author(s):  
Piergiorgio Odifreddi

We conclude here the treatment of forcing in recursion theory begun in Part I and continued in Part II of [31]. The numbering of sections is the continuation of the numbering of the first two parts. The bibliography is independent.In Part I our language was a first-order language: the only set we considered was the (set constant for the) generic set. In Part II a second-order language was introduced, and we had to interpret the second-order variables in some way. What we did was to consider the ramified analytic hierarchy, defined by induction as:A0 = {X ⊆ ω: X is arithmetic},Aα+1 = {X ⊆ ω: X is definable (in 2nd order arithmetic) over Aα},Aλ = ⋃α<λAα (λ limit),RA = ⋃αAα.We then used (a relativized version of) the fact that (Kleene [27]). The definition of RA is obviously modeled on the definition of the constructible hierarchy introduced by Gödel [14]. For this we no longer work in a language for second-order arithmetic, but in a language for (first-order) set theory with membership as the only nonlogical relation:L0 = ⊘,Lα+1 = {X: X is (first-order) definable over Lα},Lλ = ⋃α<λLα (λ limit),L = ⋃αLα.


1993 ◽  
Vol 58 (4) ◽  
pp. 1219-1250 ◽  
Author(s):  
Friedrich Wehrung

AbstractWe establish several first- or second-order properties of models of first-order theories by considering their elements as atoms of a new universe of set theory and by extending naturally any structure of Boolean model on the atoms to the whole universe. For example, complete f-rings are “boundedly algebraically compact” in the language (+, −, ·, ∧, ∨, ≤), and the positive cone of a complete l-group with infinity adjoined is algebraically compact in the language (+, ∨, ≤). We also give an example with any first-order language. The proofs can be translated into “naive set theory” in a uniform way.


2001 ◽  
Vol 7 (4) ◽  
pp. 504-520 ◽  
Author(s):  
Jouko Väänänen

AbstractWe discuss the differences between first-order set theory and second-order logic as a foundation for mathematics. We analyse these languages in terms of two levels of formalization. The analysis shows that if second-order logic is understood in its full semantics capable of characterizing categorically central mathematical concepts, it relies entirely on informal reasoning. On the other hand, if it is given a weak semantics, it loses its power in expressing concepts categorically. First-order set theory and second-order logic are not radically different: the latter is a major fragment of the former.


Author(s):  
A. F. Jameel ◽  
N. R. Anakira ◽  
A. H. Shather ◽  
Azizan Saaban ◽  
A. K. Alomari

The purpose of this analysis would be to provide a computational technique for the numerical solution of second-order nonlinear fuzzy initial value (FIVPs). The idea is based on the reformulation of the fifth order Runge Kutta with six stages (RK56) from crisp domain to the fuzzy domain by using the definitions and properties of fuzzy set theory to be suitable to solve second order nonlinear FIVP numerically. It is shown that the second order nonlinear FIVP can be solved by RK56 by reducing the original nonlinear equation intoa system of couple first order nonlinear FIVP. The findings indicate that the technique is very efficient and simple to implement and satisfy the Fuzzy solution properties. The method’s potential is demonstrated by solving nonlinear second-order FIVP.


2012 ◽  
Vol 18 (1) ◽  
pp. 91-121 ◽  
Author(s):  
Jouko Väänänen

AbstractWe try to answer the question which is the “right” foundation of mathematics, second order logic or set theory. Since the former is usually thought of as a formal language and the latter as a first order theory, we have to rephrase the question. We formulate what we call the second order view and a competing set theory view, and then discuss the merits of both views. On the surface these two views seem to be in manifest conflict with each other. However, our conclusion is that it is very difficult to see any real difference between the two. We analyze a phenomenonwe call internal categoricity which extends the familiar categoricity results of second order logic to Henkin models and show that set theory enjoys the same kind of internal categoricity. Thus the existence of non-standard models, which is usually taken as a property of first order set theory, and categoricity, which is usually taken as a property of second order axiomatizations, can coherently coexist when put into their proper context. We also take a fresh look at complete second order axiomatizations and give a hierarchy result for second order characterizable structures. Finally we consider the problem of existence in mathematics from both points of view and find that second order logic depends on what we call large domain assumptions, which come quite close to the meaning of the axioms of set theory.


2021 ◽  
pp. 14-21
Author(s):  
S. Yu. Kulabukhov

The article considers the author's fragment of an in-depth course of informatics in a physics and mathematics school. It is based on the use of differential equations to model complex physical processes. Three models are considered: a mathematical spring pendulum, the orbital motion of the satellite around the planet and the movement of the body in the atmosphere taking into account air resistance. Since in the in-depth course of mathematics of the physics and mathematics school, numerical methods for solving differential equations are not studied, the article proposes to use the simplest method — the Euler method. Using this method, the resulting differential equations in each case are numerically solved. Since differential equations arising in each model have a second order, in order to apply the Euler method, it is necessary to reduce the order of differential equations by introducing new variables. In this case, instead of one differential equation of the second order, a system of two equations of the first order arises. For each built model, its implementation in the PascalABC.NET programming language is given.


1997 ◽  
Vol 36 (04/05) ◽  
pp. 315-318 ◽  
Author(s):  
K. Momose ◽  
K. Komiya ◽  
A. Uchiyama

Abstract:The relationship between chromatically modulated stimuli and visual evoked potentials (VEPs) was considered. VEPs of normal subjects elicited by chromatically modulated stimuli were measured under several color adaptations, and their binary kernels were estimated. Up to the second-order, binary kernels obtained from VEPs were so characteristic that the VEP-chromatic modulation system showed second-order nonlinearity. First-order binary kernels depended on the color of the stimulus and adaptation, whereas second-order kernels showed almost no difference. This result indicates that the waveforms of first-order binary kernels reflect perceived color (hue). This supports the suggestion that kernels of VEPs include color responses, and could be used as a probe with which to examine the color visual system.


Sign in / Sign up

Export Citation Format

Share Document