Mathematical modeling in informatiсs lessons using numerical solution of differential equations

2021 ◽  
pp. 14-21
Author(s):  
S. Yu. Kulabukhov

The article considers the author's fragment of an in-depth course of informatics in a physics and mathematics school. It is based on the use of differential equations to model complex physical processes. Three models are considered: a mathematical spring pendulum, the orbital motion of the satellite around the planet and the movement of the body in the atmosphere taking into account air resistance. Since in the in-depth course of mathematics of the physics and mathematics school, numerical methods for solving differential equations are not studied, the article proposes to use the simplest method — the Euler method. Using this method, the resulting differential equations in each case are numerically solved. Since differential equations arising in each model have a second order, in order to apply the Euler method, it is necessary to reduce the order of differential equations by introducing new variables. In this case, instead of one differential equation of the second order, a system of two equations of the first order arises. For each built model, its implementation in the PascalABC.NET programming language is given.

2020 ◽  
Vol 20 (4) ◽  
pp. 769-782
Author(s):  
Amiya K. Pani ◽  
Vidar Thomée ◽  
A. S. Vasudeva Murthy

AbstractWe analyze a second-order in space, first-order in time accurate finite difference method for a spatially periodic convection-diffusion problem. This method is a time stepping method based on the first-order Lie splitting of the spatially semidiscrete solution. In each time step, on an interval of length k, of this solution, the method uses the backward Euler method for the diffusion part, and then applies a stabilized explicit forward Euler approximation on {m\geq 1} intervals of length {\frac{k}{m}} for the convection part. With h the mesh width in space, this results in an error bound of the form {C_{0}h^{2}+C_{m}k} for appropriately smooth solutions, where {C_{m}\leq C^{\prime}+\frac{C^{\prime\prime}}{m}}. This work complements the earlier study [V. Thomée and A. S. Vasudeva Murthy, An explicit-implicit splitting method for a convection-diffusion problem, Comput. Methods Appl. Math. 19 2019, 2, 283–293] based on the second-order Strang splitting.


Author(s):  
João Pessoa ◽  
Nuno Fonseca ◽  
C. Guedes Soares

The paper presents an experimental and numerical investigation on the motions of a floating body of simple geometry subjected to harmonic and biharmonic waves. The experiments were carried out in three different water depths representing shallow and deep water. The body is axisymmetric about the vertical axis, like a vertical cylinder with a rounded bottom, and it is kept in place with a soft mooring system. The experimental results include the first order motion responses, the steady drift motion offset in regular waves and the slowly varying motions due to second order interaction in biharmonic waves. The hydrodynamic problem is solved numerically with a second order boundary element method. The results show a good agreement of the numerical calculations with the experiments.


2018 ◽  
Vol 28 (14) ◽  
pp. 1850175
Author(s):  
Fangfang Jiang ◽  
Zhicheng Ji ◽  
Yan Wang

In this paper, we investigate the number of limit cycles for two classes of discontinuous Liénard polynomial perturbed differential systems. By the second-order averaging theorem of discontinuous differential equations, we provide several criteria on the lower upper bounds for the maximum number of limit cycles. The results show that the second-order averaging theorem of discontinuous differential equations can predict more limit cycles than the first-order one.


2002 ◽  
Vol 12 (11) ◽  
pp. 1653-1690 ◽  
Author(s):  
GIOVANNI P. GALDI ◽  
ASHWIN VAIDYA ◽  
MILAN POKORNÝ ◽  
DANIEL D. JOSEPH ◽  
JIMMY FENG

We study the steady translational fall of a homogeneous body of revolution around an axis a, with fore-and-aft symmetry, in a second-order liquid at nonzero Reynolds (Re) and Weissenberg (We) numbers. We show that, at first order in these parameters, only two orientations are allowed, namely, those with a either parallel or perpendicular to the direction of the gravity g. In both cases the translational velocity is parallel to g. The stability of the orientations can be described in terms of a critical value E c for the elasticity number E = We/Re , where E c depends only on the geometric properties of the body, such as size or shape, and on the quantity (Ψ1 + Ψ2)/Ψ1, where Ψ1 and Ψ2 are the first and second normal stress coefficients. These results are then applied to the case when the body is a prolate spheroid. Our analysis shows, in particular, that there is no tilt-angle phenomenon at first order in Re and We.


1834 ◽  
Vol 124 ◽  
pp. 247-308 ◽  

The theoretical development of the laws of motion of bodies is a problem of such interest and importance, that it has engaged the attention of all the most eminent mathematicians, since the invention of dynamics as a mathematical science by Galileo, and especially since the wonderful extension which was given to that science by Newton. Among the successors of those illustrious men, Lagrange has perhaps done more than any other analyst, to give extent and harmony to such deductive researches, by showing that the most varied consequences respecting the motions of systems of bodies may be derived from one radical formula; the beauty of the method so suiting the dignity of the results, as to make of his great work a kind of scientific poem. But the science of force, or of power acting by law in space and time, has undergone already another revolution, and has become already more dynamic, by having almost dismissed the conceptions of solidity and cohesion, and those other material ties, or geometrically imaginable conditions, which Lagrange so happily reasoned on, and by tending more and more to resolve all connexions and actions of bodies into attractions and repulsions of points: and while the science is advancing thus in one direction by the improvement of physical views, it may advance in another direction also by the invention of mathematical methods. And the method proposed in the present essay, for the deductive study of the motions of attracting or repelling systems, will perhaps be received with indulgence, as an attempt to assist in carrying forward so high an inquiry. In the methods commonly employed, the determination of the motion of a free point in space, under the influence of accelerating forces, depends on the integration of three equations in ordinary differentials of the second order; and the determination of the motions of a system of free points, attracting or repelling one another, depends on the integration of a system of such equations, in number threefold the number of the attracting or repelling points, unless we previously diminish by unity this latter number, by considering only relative motions. Thus, in the solar system, when we consider only the mutual attractions of the sun and of the ten known planets, the determination of the motions of the latter about the former is reduced, by the usual methods, to the integration of a system of thirty ordinary differential equations of the second order, between the coordinates and the time; or, by a transformation of Lagrange, to the integration of a system of sixty ordinary differential equations of the first order, between the time and the elliptic elements: by which integrations, the thirty varying coordinates, or the sixty varying elements, are to be found as functions of the time. In the method of the present essay, this problem is reduced to the search and differentiation of a single function, which satisfies two partial differential equations of the first order and of the second degree: and every other dynamical problem, respecting the motions of any system, however numerous, of attracting or repelling points, (even if we suppose those points restricted by any conditions of connexion consistent with the law of living force,) is reduced, in like manner, to the study of one central function, of which the form marks out and characterizes the properties of the moving system, and is to be determined by a pair of partial differential equations of the first order, combined with some simple considerations. The difficulty is therefore at least transferred from the integration of many equations of one class to the integration of two of another: and even if it should be thought that no practical facility is gained, yet an intellectual pleasure may result from the reduction of the most complex and, probably., of all researches respecting the forces and motions of body, to the study of one characteristic function, the unfolding of one central relation.


1987 ◽  
Vol 35 (1) ◽  
pp. 43-48 ◽  
Author(s):  
Renfrey B. Potts

The Weierstrass elliptic function satisfies a nonlinear first order and a nonlinear second order differential equation. It is shown that these differential equations can be discretized in such a way that the solutions of the resulting difference equations exactly coincide with the corresponding values of the elliptic function.


Author(s):  
Valentin Fogang

This paper presents an approach to the Euler-Bernoulli beam theory (EBBT) using the finite difference method (FDM). The EBBT covers the case of small deflections, and shear deformations are not considered. The FDM is an approximate method for solving problems described with differential equations (or partial differential equations). The FDM does not involve solving differential equations; equations are formulated with values at selected points of the structure. The model developed in this paper consists of formulating partial differential equations with finite differences and introducing new points (additional points or imaginary points) at boundaries and positions of discontinuity (concentrated loads or moments, supports, hinges, springs, brutal change of stiffness, etc.). The introduction of additional points permits us to satisfy boundary conditions and continuity conditions. First-order analysis, second-order analysis, and vibration analysis of structures were conducted with this model. Efforts, displacements, stiffness matrices, buckling loads, and vibration frequencies were determined. Tapered beams were analyzed (e.g., element stiffness matrix, second-order analysis). Finally, a direct time integration method (DTIM) was presented. The FDM-based DTIM enabled the analysis of forced vibration of structures, the damping being considered. The efforts and displacements could be determined at any time.


Sign in / Sign up

Export Citation Format

Share Document