Risk Estimation with a Time-Varying Probability of Zero Returns*

Author(s):  
Genaro Sucarrat ◽  
Steffen Grønneberg

Abstract The probability of an observed financial return being equal to zero is not necessarily zero, or constant. In ordinary models of financial return, however, for example, autoregressive conditional heteroskedasticity, stochastic volatility, Generalized Autoregressive Score, and continuous-time models, the zero probability is zero, constant, or both, thus frequently resulting in biased risk estimates (volatility, value-at-risk [VaR], expected shortfall [ES], etc.). We propose a new class of models that allows for a time-varying zero probability that can either be stationary or nonstationary. The new class is the natural generalization of ordinary models of financial return, so ordinary models are nested and obtained as special cases. The main properties (e.g., volatility, skewness, kurtosis, VaR, ES) of the new model class are derived as functions of the assumed volatility and zero-probability specifications, and estimation methods are proposed and illustrated. In a comprehensive study of the stocks at New York Stock Exchange, we find extensive evidence of time-varying zero probabilities in daily returns, and an out-of-sample experiment shows that corrected risk estimates can provide significantly better forecasts in a large number of instances.

Author(s):  
Tomáš Konderla ◽  
Václav Klepáč

The article points out the possibilities of using Hidden Markov model (abbrev. HMM) for estimation of Value at Risk metrics (abbrev. VaR) in sample. For the illustration we use data of the company listed on Prague Stock Exchange in range from January 2011 to June 2016. HMM approach allows us to classify time series into different states based on their development characteristic. Due to a deeper shortage of existing domestic results or comparison studies with advanced volatility governed VaR forecasts we tested HMM with univariate ARMA‑GARCH model based VaR estimates. The common testing via Kupiec and Christoffersen procedures offer generalization that HMM model performs better that volatility based VaR estimation technique in terms of accuracy, even with the simpler HMM with normal‑mixture distribution against previously used GARCH with many types of non‑normal innovations.


2011 ◽  
Vol 8 (1) ◽  
Author(s):  
Emilija Nikolić-Đorić ◽  
Dragan Đorić

This paper uses RiskMetrics, GARCH and IGARCH models to calculate daily VaR for Belgrade Stock Exchange index BELEX15 returns based on the normal and Student t innovation distribution. In the case of GARCH and IGARCH models VaR values are obtained applying Extreme Value Theory on the standardized residuals. The Kupiec's LR statistics was used to test the accuracy of risk measurement models. The main conclusions are: (1) when modelling value-at-risk it is very important to have a good model for volatility of stock returns; (2) both stationary and integrated GARCH models outperform RiskMetrics in estimating VaR; (3) although long memory volatility is present in the BELEX15 index, IGARCH models cannot outperform GARCH type models in VaR evaluations for this index.


2021 ◽  
Vol 9 (1) ◽  
pp. 1-24
Author(s):  
Jitender

Abstract The value-at-risk (Va) method in market risk management is becoming a benchmark for measuring “market risk” for any financial instrument. The present study aims at examining which VaR model best describes the risk arising out of the Indian equity market (Bombay Stock Exchange (BSE) Sensex). Using data from 2006 to 2015, the VaR figures associated with parametric (variance–covariance, Exponentially Weighted Moving Average, Generalized Autoregressive Conditional Heteroskedasticity) and non-parametric (historical simulation and Monte Carlo simulation) methods have been calculated. The study concludes that VaR models based on the assumption of normality underestimate the risk when returns are non-normally distributed. Models that capture fat-tailed behaviour of financial returns (historical simulation) are better able to capture the risk arising out of the financial instrument.


2011 ◽  
Vol 21 (1) ◽  
pp. 103-118 ◽  
Author(s):  
Dragan Djoric ◽  
Emilija Nikolic-Djoric

The aim of this paper is to find distributions that adequately describe returns of the Belgrade Stock Exchange index BELEX15. The sample period covers 1067 trading days from 4 October 2005 to 25 December 2009. The obtained models were considered in estimating Value at Risk ( VaR ) at various confidence levels. Evaluation of VaR model accuracy was based on Kupiec likelihood ratio test.


Sign in / Sign up

Export Citation Format

Share Document