scholarly journals Return distribution and value at risk estimation for BELEX15

2011 ◽  
Vol 21 (1) ◽  
pp. 103-118 ◽  
Author(s):  
Dragan Djoric ◽  
Emilija Nikolic-Djoric

The aim of this paper is to find distributions that adequately describe returns of the Belgrade Stock Exchange index BELEX15. The sample period covers 1067 trading days from 4 October 2005 to 25 December 2009. The obtained models were considered in estimating Value at Risk ( VaR ) at various confidence levels. Evaluation of VaR model accuracy was based on Kupiec likelihood ratio test.

Author(s):  
Tomáš Konderla ◽  
Václav Klepáč

The article points out the possibilities of using Hidden Markov model (abbrev. HMM) for estimation of Value at Risk metrics (abbrev. VaR) in sample. For the illustration we use data of the company listed on Prague Stock Exchange in range from January 2011 to June 2016. HMM approach allows us to classify time series into different states based on their development characteristic. Due to a deeper shortage of existing domestic results or comparison studies with advanced volatility governed VaR forecasts we tested HMM with univariate ARMA‑GARCH model based VaR estimates. The common testing via Kupiec and Christoffersen procedures offer generalization that HMM model performs better that volatility based VaR estimation technique in terms of accuracy, even with the simpler HMM with normal‑mixture distribution against previously used GARCH with many types of non‑normal innovations.


2009 ◽  
Vol 54 (183) ◽  
pp. 119-138 ◽  
Author(s):  
Milica Obadovic ◽  
Mirjana Obadovic

This paper presents market risk evaluation for a portfolio consisting of shares that are continuously traded on the Belgrade Stock Exchange, by applying the Value-at-Risk model - the analytical method. It describes the manner of analytical method application and compares the results obtained by implementing this method at different confidence levels. Method verification was carried out on the basis of the failure rate that demonstrated the confidence level for which this method was acceptable in view of the given conditions.


Author(s):  
Ahmad Hajihasani ◽  
Ali Namaki ◽  
Nazanin Asadi ◽  
Reza Tehrani

Value-at-risk (VaR) is a crucial subject that researchers and practitioners extensively use to measure and manage uncertainty in financial markets. Although VaR is a standard risk control instrument, there are criticisms about its performance. One of these cases, which has been studied in this research, is the VaR underestimation during times of crisis. In these periods, the non-Gaussian behavior of markets intensifies, and the estimated VaRs by typical models are lower than the real values. A potential approach that can be used to describe the non-Gaussian behavior of return series is the Tsallis entropy framework and nonextensive statistical methods. This paper has used the nonextensive models for analyzing financial markets’ behavior during crisis times. By applying the q-Gaussian probability density function for emerging and mature markets over 20 years, we can see a better VaR estimation than the regular models, especially during crisis times. We have shown that the q-Gaussian models composed of VaR and Expected Shortfall (ES) estimate risk better than the standard models. By comparing the ES, VaR, [Formula: see text]-VaR and [Formula: see text]-ES for emerging and mature markets, we see in confidence levels more than 0.98, the outputs of q models are more real, and the [Formula: see text]-ES model has lower errors than the other ones. Also, it is evident that in the mature markets, the difference of VaR between normal condition and nonextensive approach increases more than one standard deviation during times of crisis. Still, in the emerging markets, we cannot see a specific pattern. The findings of this paper are useful for analyzing the risk of financial crises in different markets.


2011 ◽  
Vol 8 (1) ◽  
Author(s):  
Emilija Nikolić-Đorić ◽  
Dragan Đorić

This paper uses RiskMetrics, GARCH and IGARCH models to calculate daily VaR for Belgrade Stock Exchange index BELEX15 returns based on the normal and Student t innovation distribution. In the case of GARCH and IGARCH models VaR values are obtained applying Extreme Value Theory on the standardized residuals. The Kupiec's LR statistics was used to test the accuracy of risk measurement models. The main conclusions are: (1) when modelling value-at-risk it is very important to have a good model for volatility of stock returns; (2) both stationary and integrated GARCH models outperform RiskMetrics in estimating VaR; (3) although long memory volatility is present in the BELEX15 index, IGARCH models cannot outperform GARCH type models in VaR evaluations for this index.


2014 ◽  
Vol 1065-1069 ◽  
pp. 3250-3253 ◽  
Author(s):  
Jing Jing Jiang ◽  
Bin Ye

Based on the analysis of the dynamics of carbon price volatility, this article proposes to develop a combined extreme value theory and conditional variance based Value-at-Risk model (GARCH-EVT-VaR) for short-term risk measurement and estimation of the carbon spot market under the European Union Emission Trading Scheme (EU ETS). The model is implied to the EUA spot market and compared with the traditional GARCH-VaR model, the empirical results show that the GARCH based model underestimates market risks by overlooking the great price shocks, but the GARCH-EVT based model has the ability to take those extreme jumps into its risk estimations.


2021 ◽  
Vol 9 (1) ◽  
pp. 1-24
Author(s):  
Jitender

Abstract The value-at-risk (Va) method in market risk management is becoming a benchmark for measuring “market risk” for any financial instrument. The present study aims at examining which VaR model best describes the risk arising out of the Indian equity market (Bombay Stock Exchange (BSE) Sensex). Using data from 2006 to 2015, the VaR figures associated with parametric (variance–covariance, Exponentially Weighted Moving Average, Generalized Autoregressive Conditional Heteroskedasticity) and non-parametric (historical simulation and Monte Carlo simulation) methods have been calculated. The study concludes that VaR models based on the assumption of normality underestimate the risk when returns are non-normally distributed. Models that capture fat-tailed behaviour of financial returns (historical simulation) are better able to capture the risk arising out of the financial instrument.


Sign in / Sign up

Export Citation Format

Share Document