Detection of Pintomyia fischeri (Diptera: Psychodidae) With Leishmania infantum (Trypanosomatida: Trypanosomatidae) Promastigotes in a Focus of Visceral Leishmaniasis in Brazil

Author(s):  
Fredy Galvis-Ovallos ◽  
Adriele Eiko Ueta ◽  
Gabriella de Oliveira Marques ◽  
Ana Maria Casagrande Sarmento ◽  
Gabriela Araujo ◽  
...  

Abstract Visceral leishmaniasis is spreading in Brazil where the main vector of its agent, Leishmania infantum Nicolle, 1908, is the Lutzomyia longipalpis (Lutz & Neiva, 1912) species complex (Diptera: Psychodidae: Phlebotominae), on which many of the activities of the visceral leishmaniasis surveillance program are based. However, there are areas where canine, and/or human cases have been occurring without the presence of this species complex as in the western part of the Greater São Paulo Metropolitan region, where Embu das Artes municipality is situated. In this area, Pintomyia fischeri (Pinto, 1926) has been implicated as potential vector of Le. infantum but so far its natural infection with this parasite has not yet been ascertained. Therefore, the present study sought to investigate the natural infection in sand flies of a CVL focus in Embu das Artes. The sand fly collections were undertaken with Shannon and CDC traps, monthly, between 1800 and 2100 hours from November 2018 to October 2019, inclusive. A total of 951 sand flies (457 males and 494 females), belonging to 10 species, were captured. Pintomyia fischeri was the predominant species (89.5%); of which 426 females were dissected and one of them (0.23%) was found to be harboring flagellates in its midgut. A sample of these flagellates was isolated in culture and characterized by a 234 base pair fragment of Leishmania heat-shock protein 70 gene (hsp70) and restriction fragment length polymorphism with Hae III restriction enzyme as Le. infantum. This finding reinforces previous evidence of Pi. fischeri as a vector of Le. infantum in foci of visceral leishmaniasis and highlights the importance of vector surveillance in areas where this species occurs.

2014 ◽  
Vol 23 (3) ◽  
pp. 320-327 ◽  
Author(s):  
Rafaella Albuquerque Silva ◽  
Fabricio Kassio Moura Santos ◽  
Lindemberg Caranha de Sousa ◽  
Elizabeth Ferreira Rangel ◽  
Claudia Maria Leal Bevilaqua

The main vector for visceral leishmaniasis (VL) in Brazil is Lutzomyia longipalpis. However, the absence of L. longipalpis in a region of autochthonous VL demonstrates the participation of other species in the transmission of the parasite. Studies conducted in La Banda, Argentina, and São Vicente Férrer, Pernambuco State, Brazil, have correlated the absence of L. longipalpisand the presence of L. migonei with autochthonous cases of VL. In São Vicente Férrer, Pernambuco, there was evidence for the natural infection of L. migonei with Leishmania infantum chagasi. Thus, the objective of this work was to assess the ecology of the sand flies L. longipalpis and L. migonei in Fortaleza, an endemic area for VL. Insect capture was conducted at 22 sampling points distributed across four regions of Fortaleza. In total, 32,403 sand flies were captured; of these, 18,166 (56%) were identified as L. longipalpis and 14,237 (44%) as L. migonei. There were significant density differences found between the vectors at each sampling site (indoors and outdoors) (p <0.0001). These findings confirm that L. migonei and L. longipalpis are distributed throughout Fortaleza, where they have adapted to an indoor environment, and suggest that L. migonei may share the role as a vector with L. longipalpis in the transmission of VL in Fortaleza.


2019 ◽  
Vol 56 (5) ◽  
pp. 1368-1376 ◽  
Author(s):  
Josiane V Lopes ◽  
Erika M Michalsky ◽  
Nathalia C L Pereira ◽  
Adão J V de Paula ◽  
Fabiana O Lara-Silva ◽  
...  

Abstract Among neglected tropical diseases, visceral leishmaniasis (VL) shows great relevance in global terms and is a serious public health concern due to the possibility of severe and lethal forms in humans. In this study, we evaluate entomological factors such as diversity and abundance of phlebotomine sand flies (Diptera:Psychodidae) and the Leishmania species circulating in these species in possible association with VL transmission in the Brazilian town Itaúna. The entomological collections were performed during three consecutive nights, always in the third week of each month, within a period of 12 mo. A total of 1,786 sand fly specimens were collected, from which 20% were collected inside houses. The influence of three local climatic variables (temperature, rainfall, relative humidity) on the population sizes of these insects was evaluated. Temperature was the most influential factor, with a significant positive correlation with the local population size of phlebotomine sand flies collected per month. Lutzomyia longipalpis (Lutz & Neiva, 1912) was the predominant species in the study area. Leishmania DNA was detected in nine out of 133 pools of sand fly females, using nested/PCR, which resulted in a minimal natural infection rate of 2.91%. DNA from Leishmania infantum Nicolle, 1908 (Kinetoplastida: Trypanosomatida), was detected in Evandromyia cortelezzii (Bréthes, 1923), Ev. evandroi (Costa, Lima & Antunes, 1936), Ev. lenti (Mangabeira, 1938), and Ev. termitophila (Martins, Falcão & Silva, 1964), besides Lu. longipalpis. Our study indicates favorable conditions for VL spreading in Itaúna due to the presence of Lu. longipalpis and Le. infantum-infected phlebotomine sand flies.


Insects ◽  
2018 ◽  
Vol 9 (4) ◽  
pp. 162 ◽  
Author(s):  
Austin Merchant ◽  
Tian Yu ◽  
Jizhe Shi ◽  
Xuguo Zhou

Phlebotomus papatasi, an Old World sand fly species, is primarily responsible for the transmission of leishmaniasis, a highly infectious and potentially lethal disease. International travel, especially military rotations, between domestic locations and P. papatasi-prevalent regions in the Middle East poses an imminent threat to the public health of US citizens. Because of its small size and cryptic morphology, identification of P. papatasi is challenging and labor-intensive. Here, we developed a ribosomal DNA-polymerase chain reaction (PCR)-based diagnostic assay that is capable of detecting P. papatasi genomic DNA from mixed samples containing multiple sand flies native to the Americas. Serial dilution of P. papatasi samples demonstrated that this diagnostic assay could detect one P. papatasi from up to 255 non-target sand flies. Due to its simplicity, sensitivity and specificity, this rapid identification tool is suited for a long-term surveillance program to screen for the presence of P. papatasi in the continental United States and to reveal geographical regions potentially vulnerable to sand fly-borne diseases.


2021 ◽  
Vol 17 (3) ◽  
pp. e1009354
Author(s):  
Monica E. Staniek ◽  
James G. C. Hamilton

Globally visceral leishmaniasis (VL) causes thousands of human deaths every year. In South America, the etiologic agent, Leishmania infantum, is transmitted from an infected canine reservoir to human hosts by the bite of the sand fly vector; predominantly Lutzomyia longipalpis. Previous evidence from model rodent systems have suggested that the odour of infected hosts is altered by the parasite making them more attractive to the vector leading to an increased biting rate and improved transmission prospects for the pathogen. However, there has been no assessment of the effect of Le infantum infection on the attractiveness of dogs, which are the natural reservoirs for human infection. Hair collected from infected and uninfected dogs residing in a VL endemic city in Brazil was entrained to collect the volatile chemical odours present in the headspace. Female and male Lu. longipalpis sand flies were offered a choice of odour entrained from infected and uninfected dogs in a series of behavioural experiments. Odour of uninfected dogs was equally attractive to male or female Lu. longipalpis when compared to a solvent control. Female Lu. longipalpis were significantly more attracted to infected dog odour than uninfected dog odour in all 15 experimental replicates (average 45.7±0.87 females attracted to infected odour; 23.9±0.82 to uninfected odour; paired T-test, P = 0.000). Male Lu. longipalpis did not significantly prefer either infected or uninfected odour (average 36.1±0.4 males to infected odour; 35.7±0.6 to uninfected odour; paired T-test, P = 0.722). A significantly greater proportion of females chose the infected dog odour compared to the males (paired T-test, P = 0.000). The results showed that the odour of dogs infected with Le. infantum was significantly more attractive to blood-seeking female sand flies than it was to male sand flies. This is strong evidence for parasite manipulation of the host odour in a natural transmission system and indicates that infected dogs may have a disproportionate significance in maintaining infection in the canine and human population.


2021 ◽  
Vol 2 ◽  
Author(s):  
Erich Loza Telleria ◽  
Daisy Aline Azevedo-Brito ◽  
Barbora Kykalová ◽  
Bruno Tinoco-Nunes ◽  
André Nóbrega Pitaluga ◽  
...  

Phlebotomine sand flies (Diptera, Psychodidae) belonging to the Lutzomyia genus transmit zoonoses in the New World. Lutzomyia longipalpis is the main vector of Leishmania infantum, which is the causative agent of visceral leishmaniasis in Brazil. To identify key molecular aspects involved in the interaction between vector and pathogens and contribute to developing disease transmission controls, we investigated the sand fly innate immunity mediated by the Janus kinase/signal transducer and activator of transcription (Jak-STAT) pathway in response to L. infantum infection. We used two study models: L. longipalpis LL5 embryonic cells co-cultured with L. infantum and sand fly females artificially infected with the parasite. We used qPCR to follow the L. longipalpis gene expression of molecules involved in the Jak-STAT pathway. Also, we modulated the Jak-STAT mediated immune response to understand its role in Leishmania parasite infection. For that, we used RNAi to silence the pathway regulators, protein inhibitor of activated STATs (PIAS) in LL5 cells, and STAT in adult females. In addition, the pathway suppression effect on parasite development within the vector was assessed by light microscopy in late-phase infection. The silencing of the repressor PIAS in LL5 cells led to a moderate increase in a protein tyrosine phosphatase 61F (PTP61F) expression. It suggests a compensatory regulation between these two repressors. L. infantum co-culture with LL5 cells upregulated repressors PIAS, suppressor of cytokine signaling (SOCS), and PTP61F. It also downmodulated virus-induced RNA-1 (VIR-1), a pathway effector, indicating that the parasite could repress the Jak-STAT pathway in LL5 cells. In Leishmania-infected L. longipalpis females, STAT and the antimicrobial peptide attacin were downregulated on the third day post-infection, suggesting a correlation that favors the parasite survival at the end of blood digestion in the sand fly. The antibiotic treatment of infected females showed that the reduction of gut bacteria had little effect on the Jak-STAT pathway regulation. STAT gene silencing mediated by RNAi reduced the expression of inducible nitric oxide synthase (iNOS) and favored Leishmania growth in sand flies on the first day post-infection. These results indicate that STAT participated in the iNOS regulation with subsequent effect on parasite survival.


2020 ◽  
Author(s):  
Monica E. Staniek ◽  
James G.C. Hamilton

AbstractGlobally visceral leishmaniasis (VL) causes thousands of human deaths every year. In South America, the etiologic agent, Leishmania infantum, is transmitted from an infected canine reservoir to human hosts by the blood-feeding activity of the sand fly vector, predominantly, Lutzomyia longipalpis. Previous evidence from model rodent systems have suggested that the odour of infected hosts is altered by the parasite making them more attractive to the vector leading to an increased biting rate and improved transmission prospects for the pathogen. However, the effect of Le. infantum infection on the attractiveness of naturally infected dogs which are integral to human infection, has not been assessed.Hair collected from infected and uninfected dogs residing in a VL endemic city in Brazil. was entrained to collect the volatile chemical odours present in the headspace. Female and male Lu. longipalpis sand flies were offered a choice of infected or uninfected odour in a series of behavioural experiments. Control experiments established that female and male Lu. longipalpis were equally attracted to uninfected dog odour, female Lu. longipalpis were significantly more attracted to infected dog odour than uninfected dog odour in all 15 experimental replicates (average 45.7±0.87 females attracted to infected odour; 23.9±0.82 to uninfected odour; paired T-test, P=0.000). Male Lu. longipalpis did not significantly prefer either infected or uninfected odour (average 36.1±0.4 males to infected odour; 35.7±0.6 to uninfected odour; paired T-test, P=0.722). A significantly greater proportion of females chose the infected dog odour compared to the males (paired T-test, P=0.000).The results show that dogs infected with Le. infantum are significantly more attractive to blood-feeding female than male sand flies. This is strong evidence for parasite manipulation of the host odour in a natural transmission system and indicates that infected dogs may have a disproportionate significance in maintaining infection in canine and human infection.Author SummaryVisceral leishmaniasis (VL) is a disease caused by the Protist parasite Leishmania infantum. In Brazil and other South and Central American countries, the parasite is transmitted by the blood-feeding activity of infected female Lutzomyia longipalpis sand flies. The disease leads to thousands of human cases and deaths every year. Domestic dogs are the reservoir of infection for humans therefore understanding the effect of infection on dogs is important in developing an understanding of the epidemiology of the disease. Although previous studies on rodent models of Le. infantum infection have shown that infected Golden Hamsters are more attractive to Lu. longipalpis the attractiveness of naturally infected dogs to the insect vector has not been previously been investigated. In this study we showed that the odour of infected dogs is significantly more attractive to female sand flies which can transmit the pathogen than to male sand flies which do not. This clear-cut difference in attraction of female and males suggests that the females are preferentially attracted by parasite infected hosts and may lead to enhanced infection and transmission opportunities for the parasite.


Author(s):  
Karina Mondragon-Shem ◽  
Katherine Wongtrakul-Kish ◽  
Radoslaw P. Kozak ◽  
Shi Yan ◽  
Iain Wilson ◽  
...  

AbstractDuring Leishmania transmission sand flies inoculate parasites and saliva into the skin of vertebrates. Saliva has anti-haemostatic and anti-inflammatory activities that evolved to facilitate bloodfeeding, but also modulate the host’s immune responses. Sand fly salivary proteins have been extensively studied, but the nature and biological roles of protein-linked glycans remain overlooked. Here, we characterised the profile of N-glycans from the salivary glycoproteins of Lutzomyia longipalpis, vector of visceral leishmaniasis in the Americas. In silico predictions suggest half of Lu. longipalpis salivary proteins may be N-glycosylated. SDS-PAGE coupled to LC-MS analysis of sand fly saliva, before and after enzymatic deglycosylation, revealed several candidate glycoproteins. To determine the diversity of N-glycan structures in sand fly saliva, enzymatically released sugars were fluorescently tagged and analysed by HPLC, combined with highly sensitive LC-MS/MS, MALDI-TOF-MS, and exoglycosidase treatments. We found that the N-glycan composition of Lu. longipalpis saliva mostly consists of oligomannose sugars, with Man5GlcNAc2 being the most abundant, and a few hybrid-type species. Interestingly, some glycans appear modified with a group of 144 Da, whose identity has yet to be confirmed. Our work presents the first detailed structural analysis of sand fly salivary glycans.


2011 ◽  
Vol 27 (11) ◽  
pp. 2117-2123 ◽  
Author(s):  
Ricardo Andrade Barata ◽  
Erika Monteiro Michalsky ◽  
Ricardo Toshio Fujiwara ◽  
João Carlos França-Silva ◽  
Marília Fonseca Rocha ◽  
...  

Montes Claros in Minas Gerais State, Brazil, was considered an intense transmission area for visceral leishmaniasis. This study evaluated sand fly fauna after insecticide application. Captures were performed in 10 districts from September 2005 to August 2006 with CDC light traps inside and outside each residence. Cypermethrin was sprayed in two cycles during November/2005 and May/2006. The 636 specimens collected, belonging to 10 species, were predominantly Lutzomyia longipalpis (79%), and most frequently males (70%). The highest percentage of specimens were captured in areas surrounding domiciles (85.8%). The main species were observed to be sensitive to treatment with the insecticide. The results showed a reduction in the number of sand flies collected after use of cypermethrin in homes and annexes, and with residual effect lasting from two to four months.


2010 ◽  
Vol 26 (12) ◽  
pp. 2414-2419 ◽  
Author(s):  
Nanci A. Missawa ◽  
Érika Monteiro Michalsky ◽  
Consuelo Latorre Fortes-Dias ◽  
Edelberto Santos Dias

The American visceral leishmaniasis (AVL) is caused by parasites belonging to the genus Leishmania (Trypanosomatidae) and is transmitted to humans through the bite of certain species of infected phlebotomine sand flies. In this study, we investigated the natural infection ratio of Lutzomyia longipalpis, the main vector species of AVL in Brazil, in Várzea Grande, Mato Grosso State. Between July 2004 and June 2006, phlebotomine sand flies were captured in peridomestic areas using CDC light-traps. Four hundred and twenty (420) specimens of Lu. longipalpis were captured. 42 pools, containing 10 specimens of Lu. longipalpis each, were used for genomic DNA extraction and PCR (polymerase chain reaction) amplification. Leishmania spp. DNA was detected in three out of the 42 pools tested, resulting in a minimal infection ratio of 0.71%. Restriction fragment length polymorphism (RFLP) analysis indicated that Leishmania (L.) chagasi was the infective agent in the positive pools.


2020 ◽  
Author(s):  
Vanessa Barbosa ◽  
Cristian F Souza ◽  
Derek Gatherer ◽  
Reginaldo P Brazil ◽  
James Gordon Campbell Hamilton

Abstract Background: The sand fly, Lutzomyia longipalpis, is the main vector of Leishmania infantum in Brazil. A previous laboratory study showed that covering surfaces with insecticide-impregnated netting may provide an alternative method for killing sand flies. Synthetic male Lu. longipalpis sex/aggregation pheromone co-located with micro-encapsulated l-cyhalothrin demonstrated the potential of “lure-and-kill” to significantly reduce canine infection and sand fly densities. In this study we were interested to determine if insecticide impregnated netting could replace sprayed insecticide for Lu. longipalpis control.Methods: We placed synthetic pheromone in experimental and real chicken sheds treated with a 1m2 surface of either sprayed insecticide or insecticide-impregnated netting. Two experiments in experimental chicken sheds were carried out to determine the effect of the insecticide treatments on Lu. longipalpis over 1-week and 16-week periods. We counted the number of Lu. longipalpis collected overnight and dead at 24 hours. Two longitudinal intervention studies were carried in real chicken sheds and compared the numbers of Lu. longipalpis (collected and dead at 24h) before adding the intervention (either the netting or sprayed insecticide treatments) with the numbers collected 24h after the intervention. Results: In the first experiment all flies caught in the spray treated experimental chicken sheds were dead at 24 hours and in netting treated sheds 97% of females and 88% of males were dead at 24 hours (257 vs 225, Wilcoxon Signed Ranks Test P=0.043). The netting and spray treated traps were equally effective at killing both female and male Lu. longipalpis over the first 8-weeks however after 16-weeks both treatments killed a significantly lower proportion of females (64%vs 96%; P=0.000) and males 89%vs 100%; P=0.000) compared to the beginning. In the first of the longitudinal studies in real chicken sheds only the netting intervention significantly increased the proportion of females dead after 24h (60%vs81%; P=0.042). The subsequent study showed that both netting and spraying treatments had similarly significant impacts on the proportion of females dead after 24h (netting: 60%vs80%: P=0.0194 and spraying: 43%vs72%: P=0.0004).Conclusions: The netting and spray insecticide interventions (with synthetic sex/aggregation pheromone) have similar impacts on the Lu. longipalpis population.


Sign in / Sign up

Export Citation Format

Share Document