scholarly journals Quantifying the impact of soil compaction on root system architecture in tomato (Solanum lycopersicum) by X-ray micro-computed tomography

2012 ◽  
Vol 110 (2) ◽  
pp. 511-519 ◽  
Author(s):  
Saoirse R. Tracy ◽  
Colin R. Black ◽  
Jeremy A. Roberts ◽  
Craig Sturrock ◽  
Stefan Mairhofer ◽  
...  
2013 ◽  
Vol 370 (1-2) ◽  
pp. 35-45 ◽  
Author(s):  
Susan Zappala ◽  
Stefan Mairhofer ◽  
Saoirse Tracy ◽  
Craig J. Sturrock ◽  
Malcolm Bennett ◽  
...  

2016 ◽  
Vol 171 (3) ◽  
pp. 2028-2040 ◽  
Author(s):  
Eric D. Rogers ◽  
Daria Monaenkova ◽  
Medhavinee Mijar ◽  
Apoorva Nori ◽  
Daniel I. Goldman ◽  
...  

Plant Methods ◽  
2020 ◽  
Vol 16 (1) ◽  
Author(s):  
Shota Teramoto ◽  
Satoko Takayasu ◽  
Yuka Kitomi ◽  
Yumiko Arai-Sanoh ◽  
Takanari Tanabata ◽  
...  

2014 ◽  
Vol 13 (8) ◽  
pp. vzj2014.03.0024 ◽  
Author(s):  
Nicolai Koebernick ◽  
Ulrich Weller ◽  
Katrin Huber ◽  
Steffen Schlüter ◽  
Hans-Jörg Vogel ◽  
...  

Microscopy ◽  
2021 ◽  
Author(s):  
Tomofumi Kurogane ◽  
Daisuke Tamaoki ◽  
Sachiko Yano ◽  
Fumiaki Tanigaki ◽  
Toru Shimazu ◽  
...  

Abstract Plant roots change their morphological traits in order to adapt themselves to different environmental conditions, resulting in alteration of the root system architecture. To understand this mechanism, it is essential to visualize morphology of the entire root system. To reveal effects of long-term alteration of gravity environment on root system development, we have performed an experiment in the International Space Station using Arabidopsis plants and obtained dried root systems grown in rockwool slabs. X-ray computed tomography (CT) technique using industrial X-ray scanners has been introduced to visualize root system architecture of crop species grown in soil in 3D non-invasively. In the case of the present study, however, root system of Arabidopsis is composed of finer roots compared with typical crop plants and rockwool is also composed of fibers having similar dimension to that of the roots. A higher spatial resolution imaging method is required for distinguishing roots from rockwool. Therefore, in the present study, we tested refraction-contrast X-ray micro-CT using coherent X-ray optics available at the beamline of the synchrotron radiation facility SPring-8 for bio-imaging. We have found that wide field of view but with low resolution obtained at the experimental Hutch 3 of this beamline provided an overview map of the root systems, while narrow field of view but with high resolution obtained at the experimental Hutch 1 provided extended architecture of the secondary roots, by clear distinction between roots and individual rockwool fibers, resulting in successful tracing of these roots from their basal regions.


2021 ◽  
Author(s):  
Mon-Ray Shao ◽  
Ni Jiang ◽  
Mao Li ◽  
Anne Howard ◽  
Kevin Lehner ◽  
...  

ABSTRACTThe root system is critical for the survival of nearly all land plants and a key target for improving abiotic stress tolerance, nutrient accumulation, and yield in crop species. Although many methods of root phenotyping exist, within field studies one of the most popular methods is the extraction and measurement of the upper portion of the root system, known as the root crown, followed by trait quantification based on manual measurements or 2D imaging. However, 2D techniques are inherently limited by the information available from single points of view. Here, we used X-ray computed tomography to generate highly accurate 3D models of maize root crowns and created computational pipelines capable of measuring 71 features from each sample. This approach improves estimates of the genetic contribution to root system architecture, and is refined enough to detect various changes in global root system architecture over developmental time as well as more subtle changes in root distributions as a result of environmental differences. We demonstrate that root pulling force, a high-throughput method of root extraction that provides an estimate of root biomass, is associated with multiple 3D traits from our pipeline. Our combined methodology can therefore be used to calibrate and interpret root pulling force measurements across a range of experimental contexts, or scaled up as a stand-alone approach in large genetic studies of root system architecture.


2011 ◽  
Vol 353 (1-2) ◽  
pp. 195-208 ◽  
Author(s):  
Saoirse R. Tracy ◽  
Colin R. Black ◽  
Jeremy A. Roberts ◽  
Ann McNeill ◽  
Rob Davidson ◽  
...  

2021 ◽  
Author(s):  
Pankaj K Verma ◽  
Shikha Verma ◽  
Nalini Pandey

Abstract BackgroundIn order to feed expanding population, new crop varieties were generated which significantly contribute to world food security. However, the growth of these improved plants varieties relied primarily on synthetic fertilizers, which negatively affect the environment as well as human health. Plants adapt to adverse environmental changes by adopting root systems through architectural changes at the root-type and tissue-specific changes and nutrient uptake efficiency. ScopePlants adapt and operate distinct pathways at various stages of development in order to optimally establish their root systems, such as change in the expression profile of genes, changes in phytohormone level and microbiome induced Root System Architecture (RSA) modification. Many scientific studies have been carried out to understand plant response to microbial colonization and how microbes involved in RSA improvement through phytohormone level and transcriptomic changes.ConclusionIn this review, we spotlight the impact of genes, phytohormones and root microbiota on RSA and provide specific, critical new insights that have been resulted from recent studies on rice root as a model. First, we discuss new insights into the genetic regulation of RSA. Next, hormonal regulation of root architecture and the impact of phytohormones in crown root and root branching is discussed. Finally, we discussed the impact of root microbiota in RSA modification and summarized the current knowledge about the biochemical and central molecular mechanisms involved.


2021 ◽  
Author(s):  
Hassan Al Majou ◽  
Ary Bruand ◽  
Olivier Rozembaum ◽  
Emmanuel Le Trong

Abstract. The modelling of peatland functioning, in particular the impact of anthropogenic warming and direct human disturbance on CO2, CH4 and N2O, requires detailed knowledge of the peat structure and of both water and gas flow with respect to the groundwater table level. To this end, freezing is nowadays increasingly used to obtain small size peat samples for X-ray micro computed tomography (X-ray μ-CT) as required by the need to increase the resolution of the 3D X-ray CT images of the peat structure recorded. The aim of this study was to analyze the structure of a peat material before and after freezing using X-ray μ-CT and to look for possible alterations in the structure by investigating looking at the air-filled porosity. A highly decomposed peat material close to water saturation was selected for study and collected between 25 and 40 cm depth. Two samples 4 × 4 × 7 cm3 in volume were analyzed before and after freezing using an X-ray μ-CT Nanotom 180NF (GE Phoenix X-ray, Wunstorf, Germany) with a 180 kV nanofocus X-ray tube and a digital detector array (2304 × 1152 pixels Hamamatsu detector). Results showed that the continuity and cross section of the air-filled tubular pores several hundreds to about one thousand micrometers in diameter were altered after freezing. Many much smaller air-filled pores not detected before freezing were also recorded after freezing with 470 and 474 pores higher than one voxel in volume (60 × 60 × 60 μm3 in volume each) before freezing, and 4792 and 4371 air-filled pores higher than one voxel in volume after freezing for the two samples studied. Detailed analysis showed that this increase resulted from a difference in the whole range of pore size studied and particularly from a dramatic increase in the number of air-filled pores ranging between 1 voxel (216 103 μm3) and 50 voxels (10.8 106 μm3) in volume. Theoretical calculation of the consequences of the increase in the specific volume of water by 8.7 % when it turns from liquid to solid because of freezing led to the creation of a pore volume in the organic matrix which remains saturated by water when returning to room temperature and consequently to the desaturation of the largest pores of the organic matrix as well as the finest tubular pores which were water-filled before freezing. These new air-filled pores are those measured after freezing using X-ray μ-CT and their volume is consistent with the one calculated theoretically. They correspond to small air-filled ovoid pores several voxels in volume to several dozen voxels in volume and to discontinuous air-filled fine tubular pores which were both detected after freezing. Finally, the increase in the specific volume of water because of freezing appears also be also responsible for the alteration of the already air-filled tubular pores before freezing as shown by the 3D binary images and the pore volume distribution.


Sign in / Sign up

Export Citation Format

Share Document