scholarly journals WUSCHEL in the shoot apical meristem: old player, new tricks

Author(s):  
Filipa Lopes ◽  
Carlos Galvan-Ampudia ◽  
Benoit Landrein

Abstract The maintenance of the stem cell niche in the shoot apical meristem, the structure that generates all of the aerial organs of the plant, relies on a canonical feedback loop between WUSCHEL (WUS) and CLV3 (CLV3). WUS is a homeodomain transcription factor expressed in the organizing center that moves to the central zone to promote stem cell fate. CLAVATA3 is a peptide whose expression is induced by WUS in the central zone that can move back to the organizing center to inhibit WUS expression. Within the last 20 years since the initial formulation of the CLV/WUS feedback loop, the mechanisms of stem cell maintenance have been intensively studied and the function of WUS has been redefined. In this review, we will highlight the most recent advances in our comprehension of the molecular mechanisms of WUS function, of its interaction with other transcription factors and with hormonal signals and of its connection to environmental signals. Through this, we will show how WUS can integrate both internal and external cues to adapt meristem function to the plant environment.

Author(s):  
Liang Zhang ◽  
Daniel DeGennaro ◽  
Guangzhong Lin ◽  
Jijie Chai ◽  
Elena D. Shpak

AbstractThe shoot apical meristem (SAM) is a reservoir of stem cells that gives rise to all post-embryonic aboveground plant organs. The size of the SAM remains stable over time due to a precise balance of stem cell replenishment versus cell incorporation into organ primordia. The WUSCHEL (WUS)/CLAVATA (CLV) negative feedback loop is central to SAM size regulation. Its correct function depends on accurate spatial expression of WUS and CLV3. A signaling pathway, consisting of ERECTA family (ERf) receptors and EPIDERMAL PATTERNING FACTOR LIKE (EPFL) ligands, restricts SAM width and promotes leaf initiation. While ERf receptors are expressed throughout the SAM, EPFL ligands are expressed in its periphery. Our genetic analysis demonstrated that ERfs and CLV3 synergistically regulate the size of the SAM, and wus is epistatic to erfs. Furthermore, activation of ERf signaling with exogenous EPFLs resulted in a rapid decrease of CLV3 and WUS expression. ERf-EPFL signaling inhibits expression of WUS and CLV3 in the periphery of the SAM, confining them to the center. These findings establish the molecular mechanism for stem cell positioning along the radial axis.Summary statementERf signaling restricts the width of the shoot apical meristem, a structure which generates aboveground plant organs, by inhibiting expression of two principal regulators, CLV3 and WUS, at its periphery.


Development ◽  
2021 ◽  
pp. dev.189753
Author(s):  
Liang Zhang ◽  
Daniel DeGennaro ◽  
Guangzhong Lin ◽  
Jijie Chai ◽  
Elena D. Shpak

The shoot apical meristem (SAM) is a reservoir of stem cells that gives rise to all post-embryonic aboveground plant organs. The size of the SAM remains stable over time due to a precise balance of stem cell replenishment versus cell incorporation into organ primordia. The WUSCHEL (WUS)/CLAVATA (CLV) negative feedback loop is central to SAM size regulation. Its correct function depends on accurate spatial expression of WUS and CLV3. A signaling pathway, consisting of ERECTA family (ERf) receptors and EPIDERMAL PATTERNING FACTOR LIKE (EPFL) ligands, restricts SAM width and promotes leaf initiation. While ERf receptors are expressed throughout the SAM, EPFL ligands are expressed in its periphery. Our genetic analysis demonstrated that ERfs and CLV3 synergistically regulate the size of the SAM, and wus is epistatic to erfs. Furthermore, activation of ERf signaling with exogenous EPFLs resulted in a rapid decrease of CLV3 and WUS expression. ERf-EPFL signaling inhibits expression of WUS and CLV3 in the periphery of the SAM, confining them to the center. These findings establish the molecular mechanism for stem cell positioning along the radial axis.


Cells ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 255 ◽  
Author(s):  
Miruna Mihaela Micheu ◽  
Alina Ioana Scarlatescu ◽  
Alexandru Scafa-Udriste ◽  
Maria Dorobantu

Despite significant progress in treating ischemic cardiac disease and succeeding heart failure, there is still an unmet need to develop effective therapeutic strategies given the persistent high-mortality rate. Advances in stem cell biology hold great promise for regenerative medicine, particularly for cardiac regeneration. Various cell types have been used both in preclinical and clinical studies to repair the injured heart, either directly or indirectly. Transplanted cells may act in an autocrine and/or paracrine manner to improve the myocyte survival and migration of remote and/or resident stem cells to the site of injury. Still, the molecular mechanisms regulating cardiac protection and repair are poorly understood. Stem cell fate is directed by multifaceted interactions between genetic, epigenetic, transcriptional, and post-transcriptional mechanisms. Decoding stem cells’ “panomic” data would provide a comprehensive picture of the underlying mechanisms, resulting in patient-tailored therapy. This review offers a critical analysis of omics data in relation to stem cell survival and differentiation. Additionally, the emerging role of stem cell-derived exosomes as “cell-free” therapy is debated. Last but not least, we discuss the challenges to retrieve and analyze the huge amount of publicly available omics data.


2020 ◽  
Vol 1 (1) ◽  
pp. 100002
Author(s):  
Fei Du ◽  
Wen Gong ◽  
Sonia Boscá ◽  
Matthew Tucker ◽  
Hervé Vaucheret ◽  
...  

2020 ◽  
Vol 29 ◽  
pp. 096368972090756
Author(s):  
Hong-Meng Chuang ◽  
Mao-Hsuan Huang ◽  
Yu-Shuan Chen ◽  
Horng-Jyh Harn

Stem cell transplantation is a fast-developing technique, which includes stem cell isolation, purification, and storage, and it is in high demand in the industry. In addition, advanced applications of stem cell transplantation, including differentiation, gene delivery, and reprogramming, are presently being studied in clinical trials. In contrast to somatic cells, stem cells are self-renewing and have the ability to differentiate; however, the molecular mechanisms remain unclear. SOX2 (sex-determining region Y [ SRY]-b ox 2) is one of the well-known reprogramming factors, and it has been recognized as an oncogene associated with cancer induction. The exclusion of SOX2 in reprogramming methodologies has been used as an alternative cancer treatment approach. However, the manner by which SOX2 induces oncogenic effects remains unclear, with most studies demonstrating its regulation of the cell cycle and no insight into the maintenance of cellular stemness. For controlling certain critical pathways, including Shh and Wnt pathways, SOX2 is considered irreplaceable and is required for the normal functioning of stem cells, particularly neural stem cells. In this report, we discussed the functions of SOX2 in both stem and cancer cells, as well as how this powerful regulator can be used to control cell fate.


Sign in / Sign up

Export Citation Format

Share Document