scholarly journals Three genes encoding AOP2, a protein involved in aliphatic glucosinolate biosynthesis, are differentially expressed inBrassica rapa

2015 ◽  
Vol 66 (20) ◽  
pp. 6205-6218 ◽  
Author(s):  
Jifang Zhang ◽  
Zhiyuan Liu ◽  
Jianli Liang ◽  
Jian Wu ◽  
Feng Cheng ◽  
...  
2018 ◽  
Vol 9 ◽  
Author(s):  
Lyudmila Zotova ◽  
Akhylbek Kurishbayev ◽  
Satyvaldy Jatayev ◽  
Gulmira Khassanova ◽  
Askar Zhubatkanov ◽  
...  

2019 ◽  
Vol 75 (8) ◽  
pp. 1448-1456 ◽  
Author(s):  
Young-Yon Kwon ◽  
Seung-Soo Kim ◽  
Han-Jun Lee ◽  
Seo-Hyeong Sheen ◽  
Kyoung Heon Kim ◽  
...  

Abstract Budding yeast generate heterogeneous cells that can be separated into two distinctive cell types: short-living low-density and long-living high-density (HD) cells by density gradient centrifugation. We found that ethanol and acetate induce formation of HD cells, and mitochondrial respiration is required. From their transcriptomes and metabolomes, we found upregulated differentially expressed genes in HD cells involved in the RGT2/RGT1 glucose sensing pathway and its downstream genes encoding hexose transporters. For HD cells, we determined an abundance of various carbon sources including glucose, lactate, pyruvate, trehalose, mannitol, mannose, and galactose. Other upregulated differentially expressed genes in HD cells were involved in the TORC1–SCH9 signaling pathway and its downstream genes involved in cytoplasmic translation. We also measured an abundance of free amino acids in HD cells including valine, proline, isoleucine, and glutamine. These characteristics of the HD cell transcriptome and metabolome may be important conditions for maintaining a long-living phenotype.


2020 ◽  
Author(s):  
Shahan Mamoor

Non-small cell lung cancer (NSCLC) is the leading cause of cancer death in the United States (1). We mined published microarray data (2, 3, 4) to identify differentially expressed genes in NSCLC. We found that the genes encoding the tyrosine kinase with immunoglobulin and epidermal growth factor homology domains 1 - Tie1, and its counterpart Tie2 - were both among the genes whose expression was most quantitatively different in tumors from patients with NSCLC as compared to the lung. Tie1 and Tie2 may be important for initiation or progression of non-small cell lung cancer in humans.


2013 ◽  
Vol 64 (4) ◽  
pp. 1097-1109 ◽  
Author(s):  
Huiying Miao ◽  
Jia Wei ◽  
Yanting Zhao ◽  
Huizhuan Yan ◽  
Bo Sun ◽  
...  

1999 ◽  
Vol 10 (6) ◽  
pp. 1859-1872 ◽  
Author(s):  
Arnoud J. Kal ◽  
Anton Jan van Zonneveld ◽  
Vladimir Benes ◽  
Marlene van den Berg ◽  
Marian Groot Koerkamp ◽  
...  

We describe a genome-wide characterization of mRNA transcript levels in yeast grown on the fatty acid oleate, determined using Serial Analysis of Gene Expression (SAGE). Comparison of this SAGE library with that reported for glucose grown cells revealed the dramatic adaptive response of yeast to a change in carbon source. A major fraction (>20%) of the 15,000 mRNA molecules in a yeast cell comprised differentially expressed transcripts, which were derived from only 2% of the total number of ∼6300 yeast genes. Most of the mRNAs that were differentially expressed code for enzymes or for other proteins participating in metabolism (e.g., metabolite transporters). In oleate-grown cells, this was exemplified by the huge increase of mRNAs encoding the peroxisomal β-oxidation enzymes required for degradation of fatty acids. The data provide evidence for the existence of redox shuttles across organellar membranes that involve peroxisomal, cytoplasmic, and mitochondrial enzymes. We also analyzed the mRNA profile of a mutant strain with deletions of the PIP2and OAF1 genes, encoding transcription factors required for induction of genes encoding peroxisomal proteins. Induction of genes under the immediate control of these factors was abolished; other genes were up-regulated, indicating an adaptive response to the changed metabolism imposed by the genetic impairment. We describe a statistical method for analysis of data obtained by SAGE.


1999 ◽  
Vol 19 (11) ◽  
pp. 1279-1288 ◽  
Author(s):  
Hideaki Onda ◽  
Hidetoshi Kasuya ◽  
Kintomo Takakura ◽  
Tomokatsu Hori ◽  
Tada-Atsu Imaizumi ◽  
...  

To understand the molecular processes of continuous vasospasm of cerebral arteries after subarachnoid hemorrhage, mRNA differential display and screening of cDNA expression array were performed to identify genes that are differentially expressed in vasospastic arteries of canine two-hemorrhage models. The expression levels of 18 genes were found to be upregulated, and those of two genes to be down-regulated. Of these, 12 represent known genes or homologues of genes characterized previously, and the other eight genes are not related to any sequences in the databases. The known genes include five upregulated inflammation-related genes encoding monocyte chemotactic protein-1, cystatin B, inter-α-trypsin inhibitor family heavy chain-related protein, serum amyloid A protein, and glycoprotein 130, suggesting that inflammatory reaction may be involved in the development of cerebral vasospasm. The upregulation of three known genes encoding stress-related proteins of vascular endothelial growth factor, BiP protein, and growth-arrest and DNA-damage–inducible protein may be involved in possible cell survival in the damaged arteries. A full-length cDNA for the unknown clone DVS 27, whose expression was most highly upregulated, was isolated from the cerebral artery cDNA library by hybridization. Characterization of these genes should help to clarify the molecular mechanism of continuous cerebral vasospasm after subarachnoid hemorrhage.


Sign in / Sign up

Export Citation Format

Share Document