Phi thickenings in roots: novel secondary wall structures responsive to biotic and abiotic stresses

2019 ◽  
Vol 70 (18) ◽  
pp. 4631-4642 ◽  
Author(s):  
Maketalena Aleamotu‘a ◽  
David W McCurdy ◽  
David A Collings

Abstract Phi thickenings are specialized secondary walls found in root cortical cells. Despite their widespread occurrence throughout the plant kingdom, these specialized thickenings remain poorly understood. First identified by Van Tieghem in 1871, phi thickenings are a lignified and thickened cell wall band that is deposited inside the primary wall, as a ring around the cells’ radial walls. Phi thickenings can, however, display structural variations including a fine, reticulate network of wall thickenings extending laterally from the central lignified band. While phi thickenings have been proposed to mechanically strengthen roots, act as a permeability barrier to modulate solute movement, and regulate fungal interactions, these possibilities remain to be experimentally confirmed. Furthermore, since temporal and spatial development of phi thickenings varies widely between species, thickenings may perform diverse roles in different species. Phi thickenings can be induced by abiotic stresses in different species; they can, for example, be induced by heavy metals in the Zn/Cd hyperaccumulator Thlaspi caerulescens, and in a cultivar-specific manner by water stress in Brassica. This latter observation provides an experimental platform to probe phi thickening function, and to identify genetic pathways responsible for their formation. These pathways might be expected to differ from those involved in secondary wall formation in xylem, since phi thickening deposition in not linked to programmed cell death.

1990 ◽  
Vol 68 (2) ◽  
pp. 243-257 ◽  
Author(s):  
James W. Kimbrough ◽  
Jack L. Gibson

Cytological observations are made on apothecial tissues of Geopyxis carbonaria, using transmission electron microscopy. Characteristic features of both the medullary and ectal excipula are examined. Changes in ascus apex and wall structures are examined during ascus ontogeny, especially in relation to operculum position and structure. Ultrastructure of septum configuration is observed and compared in the excipulum, ascogenous hyphae, paraphyses, and at the base of young asci. Ascosporogenesis is observed from the ascus mother cell stage and initial spore delimitation until secondary wall formation. The cytological and ultrastructural observations on this species are discussed in relation to their possible taxonomic or phylogenetic value. Key words: ascosporogenesis, Discomycetes, ascospore ultrastructure, septal ultrastructure, cytochemistry.


2021 ◽  
Author(s):  
Tanîa M. Shiga ◽  
Haibing Yang ◽  
Bryan W. Penning ◽  
Anna T. Olek ◽  
Maureen C. McCann ◽  
...  

Abstract A modified TEMPO-catalyzed oxidation of the solvent-exposed glucosyl units of cellulose to uronic acids, followed by carboxyl reduction with NaBD 4 to 6-deutero- and 6,6-dideuteroglucosyl units, provided a robust method for determining relative proportions of disordered amorphous, ordered surface chains, and anhydrous core-crystalline residues of cellulose microfibrils inaccessible to TEMPO. Both glucosyl residues of cellobiose units, digested from amorphous chains of cellulose with a combination of cellulase and cellobiohydrolase, were deuterated, whereas those from anhydrous chains were undeuterated. By contrast, solvent-exposed and anhydrous residues alternate in surface chains, so only one of the two residues of cellobiosyl units was labeled. Although current estimates indicate that each cellulose microfibril comprises only 18 to 24 (1 , 4)- b eta-D-glucan chains, we show here that microfibrils of walls of Arabidopsis leaves and maize coleoptiles, and those of secondary wall cellulose of cotton fibers and poplar wood, bundle into much larger macrofibrils, with 67 to 86% of the glucan chains in the anhydrous domain. These results indicate extensive bundling of microfibrils into macrofibrils occurs during both primary and secondary wall formation. We discuss how, beyond lignin, the degree of bundling into macrofibrils contributes an additional recalcitrance factor to lignocellulosic biomass for enzymatic or chemical catalytic conversion to biofuel substrates.


Botany ◽  
2016 ◽  
Vol 94 (5) ◽  
pp. 347-357
Author(s):  
Rodney Arthur Savidge

Rims of bordered pits form on the primary walls of radially enlarged cambial derivatives prior to the onset of general secondary-wall formation. A recent report (Botany, 2014, 92(7): 495–511) raised the possibility that the chemical composition of the rim might be different from that of the secondary wall. To investigate this, early-stage nonfluorescent and late-stage autofluorescent rims were separated from cambial derivatives of Abies balsamea (L.) Mill. and purified to homogeneity by density-gradient centrifugation. Solid state nuclear magnetic resonance spectroscopy, Raman microspectroscopy, combined gas chromatography – mass spectroscopy, enzyme digestion, and chemical resilience data support the interpretation that cellulose alone is the microfibrillar polysaccharide of nonfluorescent early-stage rims. A lignin is additionally present in late-stage rims, and it evidently bonds with cellulose because rims are extraordinarily resistant to hydrolysis by either enzymes or strong acid.


2013 ◽  
Vol 25 (11) ◽  
pp. 4421-4438 ◽  
Author(s):  
L.-B. Han ◽  
Y.-B. Li ◽  
H.-Y. Wang ◽  
X.-M. Wu ◽  
C.-L. Li ◽  
...  

2010 ◽  
Vol 63 (3) ◽  
pp. 469-483 ◽  
Author(s):  
Philippe Ranocha ◽  
Nicolas Denancé ◽  
Ruben Vanholme ◽  
Amandine Freydier ◽  
Yves Martinez ◽  
...  

2012 ◽  
Vol 194 (1) ◽  
pp. 102-115 ◽  
Author(s):  
Eryang Li ◽  
Apurva Bhargava ◽  
Weiya Qiang ◽  
Michael C. Friedmann ◽  
Natascha Forneris ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document