Cardiopulmonary exercise test

Author(s):  
Luca Moderato ◽  
Massimo Francesco Piepoli

Cardiopulmonary exercise testing (CPET) is a safe and reproducible diagnostic tool for the global assessment of cardiovascular (CV), ventilatory, and metabolic responses to exercise. It can be extremely useful for understanding the reasons for dyspnoea, fatigue, and exercise limitation, and for differentiating between cardiac and pulmonary disorders. CPET can also help the clinician to optimize the decision-making process and outcome prediction, especially in heart failure (HF) patients.

2021 ◽  
Vol 42 (Supplement_1) ◽  
Author(s):  
J.P.L De Almeida ◽  
J Milner ◽  
J Rosa ◽  
R Coutinho ◽  
M Ferreira ◽  
...  

Abstract Background Compared with the cardiac exercise stress test, more commonly used to assess the presence of ischemia, the cardiopulmonary exercise test has the advantage of providing expired gas analysis. According to current guidelines, cardiopulmonary exercise testing should be considered to stratify the risk of adverse events and to provide measures of survival improvement in heart failure populations. However, cardiac exercise stress test is more readily available and widespread than cardiopulmonary exercise testing. We aimed to compare prognostic information given by estimated pVO2 – which can be obtained from cardiac exercise stress test – and real measured pVO2 – which requires cardiopulmonary exercise test – in a heart failure population. Methods We conducted a retrospective analysis of 214 patients with HF underwent cardiac exercise stress test and accessed their 5 year survival. Non-urgent transplanted (UNOS Status 2) patients were censored alive on the date of the transplant. Duringthe cardiopulmonary exercise test, cardiac exercise stress test data simultaneously collected. Based on protocol stage achieved, estimated METs were used to calculate estimated pVO2 (pVO2 = estimated METs x 3.5). Estimated and real pVO2 were correlated using Pearson correlation and the age-adjusted prognostic power of each was determined using Cox proportional hazardsanalysis. Results 164 patients were male (77%) and the mean age of the population was 56±10 years. 78 (36%) patients had an ischemic etiology. Within 5 years from testing, 46 patients died (21.5%) and 55 patients (26%) were transplanted. Naughton modified (n=165) was the most commonly used protocol, followed by Naughton (n=39) and Bruce (n=10). Estimated pVO2 and measured pVO2 correlated significantly (R=0.66, p<0.01) (Figure 1). Both estimated (HR=0.91, 95% CI 0.86–0.95, p<0.01) and measured pVO2 (HR=0.86, 95% CI 0.80–0.91, p<0.01) strongly predicted prognosis in this population. Conclusions Estimated pVO2 correlated with measured pVO2 and strongly predicted prognosis in this heart failure population. Because it can be obtained from conventional cardiac exercise testing, it may become an alternative prognostic tool to cardiopulmonary testing. FUNDunding Acknowledgement Type of funding sources: None. Figure 1. Measured vs estimated pVO2


Author(s):  
Eva Pella ◽  
Afroditi Boutou ◽  
Aristi Boulmpou ◽  
Christodoulos E Papadopoulos ◽  
Aikaterini Papagianni ◽  
...  

Abstract Chronic kidney disease (CKD), especially end-stage kidney disease (ESKD), is associated with increased risk for cardiovascular events and all-cause mortality. Exercise intolerance as well as reduced cardiovascular reserve are extremely common in patients with CKD. Cardiopulmonary exercise testing (CPET) is a non-invasive, dynamic technique that provides an integrative evaluation of cardiovascular, pulmonary, neuropsychological and metabolic function during maximal or submaximal exercise, allowing the evaluation of functional reserves of these systems. This assessment is based on the principle that system failure typically occurs when the system is under stress and, thus, CPET is currently considered to be the gold-standard for identifying exercise limitation and differentiating its causes. It has been widely used in several medical fields for risk stratification, clinical evaluation and other applications but its use in everyday practice for CKD patients is scarce. This article describes the basic principles and methodology of CPET and provides an overview of important studies that utilized CPET in patients with ESKD, in an effort to increase awareness of CPET capabilities among practicing nephrologists.


2021 ◽  
Vol 28 (Supplement_1) ◽  
Author(s):  
P Garcia Bras ◽  
A Valentim Goncalves ◽  
J Reis ◽  
T Pereira Da Silva ◽  
R Ilhao Moreira ◽  
...  

Abstract Funding Acknowledgements Type of funding sources: None. Introduction Cardiopulmonary exercise testing (CPET) is used for risk stratification in patients with chronic heart failure (CHF). However, there is a lack of information regarding CPET prognostic power in patients under new HF therapies such as sacubitril/valsartan, Mitraclip, IV iron or SGLT2 inhibitors. The aim of this study was to evaluate the prognostic value of CPET parameters in a contemporary subset of patients with optimal medical and device therapy for CHF. Methods Retrospective evaluation of patients with CHF submitted to CPET in a tertiary center. Patients were followed up for 24 months for the composite endpoint of cardiac death, urgent heart transplantation or left ventricular assist device. CPET parameters, including peak oxygen consumption (pVO2) and VE/VCO2 slope, were analysed and their predictive power was measured. HF events were stratified according to cut-off values defined by the International Society for Heart and Lung Transplantation (ISHLT) guidelines: pVO2 of ≤12 mL/Kg/min and VE/VCO2 slope of >35. Results CPET was performed in 204 patients, from 2014 to 2018. Mean age was 59 ± 13 years, 83% male, with a mean left ventricular ejection fraction of 33 ± 8%, and a mean Heart Failure Survival Score of 8.6 ± 1.3. The discriminative power of CPET parameters is displayed in the Table. In patients with pVO2 ≤12 mL/Kg/min, the composite endpoint occurred in 18% of patients. A pVO2 value of ≤12 mL/Kg/min had a positive predictive power of 18% while pVO2 >12 had a negative predictive power of 93%. Regarding VE/VCO2 slope >35, the composite endpoint occurred in 13% of patients. A VE/VCO2 slope value of >35 had a positive predictive power of 13% while VE/VCO2 slope <35 had a negative predictive power or 94%. Conclusion Using ISHLT guideline cut-off values for advanced HF therapies patient selection, there was a reduced number of HF events (<20%) at 24 months in patients under optimal CHF therapy. While pVO2 and VE/VCO2 slope are still valuable parameters in risk stratification, redefining cut-off values may be necessary in a modern HF population. Discriminative power of CPET parameters Parameters HR; 95% CI AUC p-value Peak VO2 0.824 (0.728-0.934) 0.781 0.001 Percent of predicted pVO2 0.942 (0.907-0.978) 0.774 0.002 VE/VCO2 slope 1.068 (1.031-1.106) 0.756 0.008 Cardiorespiratory optimal point 1.118 (1.053-1.188) 0.746 0.004 PETCO2 maximum exercise 0.854 (0.768-0.950) 0.775 0.003 Ventilatory Power 0.358 (0.176-0.728) 0.796 0.002 HR Hazard ratio, AUC: Area under the curve, PETCO2: end-tidal CO2 pressure


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Greta Generati ◽  
Francesco Bandera ◽  
Marta Pellegrino ◽  
Valentina Labate ◽  
Eleonora Alfonzetti ◽  
...  

Background: In heart failure (HF) patients the severity of mitral regurgitation (MR) at rest has a well established prognostic value and its increase during exercise further adds to an increased risk. Our goal was to define the relationship between the degree of exercise MR severity with cardiopulmonary and echocardiographic related phenotypes in a cohort of HF patients. Methods: 71 HF reduced ejection fraction patients (mean age 67±11; male 72%; ischemic etiology 61%; NYHA class I, II, III and IV 13%, 36%, 39% and 12%, mean ejection fraction 33±9%) underwent cardiopulmonary exercise test (CPET) on tiltable cycle-ergometer combined with echocardiography at rest and during exercise. The population was divided into two groups according to the degree of functional peak MR: no to mild/moderate MR (no MR, MR1+ and MR2+) vs moderate/severe MR (MR3+ and MR4+). Results: A good correlation (ρ coefficient= 0.49) was found between the degree of dynamic MR and PASP at peak exercise. Despite similar echocardiographic profile at rest patients with significant peak MR (MR≥3+) had worse exercise performance (lower peak VO2, O2 pulse and workload) and impaired ventilatory efficiency (higher VE/VCO2 slope). Conclusions: In HF patients the severity of exercise-induced MR is associated with the most unfavorable performance and pulmonary hemodynamic response. A combined approach with CPET and echocardiographic assessment can help to early unmask and target functional MR and its related unfavorable phenotypes.


2020 ◽  
Vol 9 (2) ◽  
pp. 1-8 ◽  
Author(s):  
Stefanos Sakellaropoulos ◽  
Dimitra Lekaditi ◽  
Stefano Svab

A robust literature, over the last years, supports the indication of cardiopulmonary exercise testing (CPET) in patients with cardiovascular diseases. Understanding exercise physiology is a crucial component of the critical evaluation of exercise intolerance. Shortness of breath and exercise limitation is often treated with an improper focus, partly because the pathophysiology is not well understood in the frame of the diagnostic spectrum of each subspecialty. A vital field and research area have been cardiopulmonary exercise test in heart failure with preserved/reduced ejection fraction, evaluation of heart failure patients as candidates for LVAD-Implantation, as well as for LVAD-Explantation and ultimately for heart transplantation. All the CPET variables provide synergistic prognostic discrimination. However, Peak VO2 serves as the most critical parameter for risk stratification and prediction of survival rate.


Sign in / Sign up

Export Citation Format

Share Document