Stem cell application in neurorehabilitation

Author(s):  
Sebastian Jessberger ◽  
Armin Curt ◽  
Roger Barker

Several diseases of the brain and spinal cord are associated with substantial neural cell death and/or disruption of neural networks. A�variety of therapeutic strategies to rescue these systems has been proposed along with agents to induce functional plasticity within the remaining central nervous system (CNS) structures. In the case of injury or neurodegenerative disease these approaches have only met with limited success, indicating the need for novel approaches to treat diseases of the adult CNS. Recently, the idea of recruiting stem cells to replace lost structures within the adult brain or spinal cord has gained significant attention and opened up novel therapeutic avenues. Here, recent advances in our understanding of endogenous stem cells are reviewed and new clinical and preclinical data suggesting that stem cell-based therapies hold great promise as a future treatment option in a number of diseases disrupting the proper function of the adult CNS are summarized.

Author(s):  
Sebastian Jessberger ◽  
Armin Curt ◽  
Roger A. Barker

A number of diseases of the brain and spinal cord are associated with substantial neural cell death and/or disruption of correct and functional neural networks. In the past, a variety of therapeutic strategies to rescue these systems have been proposed along with agents to induce functional plasticity within the remaining central nervous system (CNS) structures. In the case of injury or neurodegenerative disease these approaches have only met with limited success, indicating the need for novel approaches to treat diseases of the adult CNS. Recently, the idea of recruiting endogenous or transplanting stem cells to replace lost structures within the adult brain or spinal cord has gained significant attention, along with in situ reprogramming, and opened up novel therapeutic avenues in the context of regenerative medicine. Here we review recent advances in our understanding of how endogenous stem cells may be a part of pathological processes in certain neuropsychiatric diseases and summarize recent clinical and preclinical data suggesting that stem cell-based therapies hold great promise as a future treatment option in a number of diseases disrupting the proper function of the adult CNS.


2020 ◽  
Author(s):  
Luipa Khandker ◽  
Marisa A. Jeffries ◽  
Yun-Juan Chang ◽  
Marie L. Mather ◽  
Jennifer N. Bourne ◽  
...  

AbstractBrain and spinal cord oligodendroglia have distinct functional characteristics, and cell autonomous loss of individual genes can result in different regional phenotypes. However, sequencing studies to date have not revealed distinctions between brain and spinal cord oligodendroglia. Using single-cell analysis of oligodendroglia during myelination, we demonstrate that brain and spinal cord precursors are transcriptionally distinct, defined predominantly by cholesterol biosynthesis. We further identify mechanistic target of rapamycin (mTOR) as a major regulator promoting cholesterol biosynthesis in oligodendroglia. Oligodendroglial-specific loss of mTOR compromises cholesterol biosynthesis in both the brain and spinal cord. Importantly, mTOR loss has a greater impact on cholesterol biosynthesis in spinal cord oligodendroglia that corresponds with more pronounced developmental deficits. However, loss of mTOR in brain oligodendroglia ultimately results in oligodendrocyte death, spontaneous demyelination, and impaired axonal function, demonstrating that mTOR is required for myelin maintenance in the adult brain.


STEMedicine ◽  
2020 ◽  
Vol 1 (1) ◽  
pp. e19
Author(s):  
Jelena Ban ◽  
Miranda Mladinic

Neural stem cells are capable of generating new neurons during development as well as in the adulthood and represent one of the most promising tools to replace lost or damaged neurons after injury or neurodegenerative disease. Unlike the brain, neurogenesis in the adult spinal cord is poorly explored and the comprehensive characterization of the cells that constitute stem cell neurogenic niche is still missing. Moreover, the terminology used to specify developmental and/or anatomical CNS regions, where neurogenesis in the spinal cord occurs, is not consensual and the analogy with the brain is often unclear. In this review, we will try to describe the heterogeneity of the stem cell types in the spinal cord ependymal zone, based on their origin and stem cell potential. We will also consider specific animal in vitro models that could be useful to identify “the right” stem cell candidate for cell replacement therapies.   


2017 ◽  
Author(s):  
Maria Angeles Marques-Torrejon ◽  
Ester Gangoso ◽  
Steven M. Pollard

AbstractGlioblastoma (GBM) is an aggressive incurable brain cancer. The cells that fuel the growth of tumours resemble neural stem cells found in the developing and adult mammalian forebrain. These are referred to as GBM stem cells (GSCs). Similar to neural stem cells, GSCs exhibit a variety of phenotypic states: dormant, quiescent, proliferative and differentiating. How environmental cues within the brain influence these distinct states is not well understood. Laboratory models of GBM tumours can be generated using either genetically engineered mouse models, or via intracranial transplantation of cultured tumour initiating cells (mouse or human). Unfortunately, these approaches are expensive, time-consuming, low-throughput and ill-suited for monitoring of live cell behaviours. Here we explored whole adult brain coronal organotypic slices as a complementary strategy to remove the experimental bottleneck. Mouse adult brain slices remain viable in a neural stem cell serum-free basal media for several weeks. GSCs can therefore be easily microinjected into specific anatomical sites ex vivo. We demonstrated distinct responses of engrafted GSCs to different microenvironments in the brain. Within the subependymal zone – one of the adult neural stem cell niches – a subset of injected tumour cells could effectively engraft and respond to endothelial niche signals. GSCs transplanted slices were treated with the anti-mitotic drug temozolomide as proof-of-principle of the utility in modelling responses to existing treatments. Thus, engraftment of mouse or human GSCs onto whole brain coronal organotypic brain slices provides a convenient experimental model for studies of GSC-host interactions and preclinical testing of candidate therapeutic agents.


2020 ◽  
Vol 15 (4) ◽  
pp. 321-331 ◽  
Author(s):  
Zhe Gong ◽  
Kaishun Xia ◽  
Ankai Xu ◽  
Chao Yu ◽  
Chenggui Wang ◽  
...  

Spinal Cord Injury (SCI) causes irreversible functional loss of the affected population. The incidence of SCI keeps increasing, resulting in huge burden on the society. The pathogenesis of SCI involves neuron death and exotic reaction, which could impede neuron regeneration. In clinic, the limited regenerative capacity of endogenous cells after SCI is a major problem. Recent studies have demonstrated that a variety of stem cells such as induced Pluripotent Stem Cells (iPSCs), Embryonic Stem Cells (ESCs), Mesenchymal Stem Cells (MSCs) and Neural Progenitor Cells (NPCs) /Neural Stem Cells (NSCs) have therapeutic potential for SCI. However, the efficacy and safety of these stem cellbased therapy for SCI remain controversial. In this review, we introduce the pathogenesis of SCI, summarize the current status of the application of these stem cells in SCI repair, and discuss possible mechanisms responsible for functional recovery of SCI after stem cell transplantation. Finally, we highlight several areas for further exploitation of stem cells as a promising regenerative therapy of SCI.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shaona Acharjee ◽  
Paul M. K. Gordon ◽  
Benjamin H. Lee ◽  
Justin Read ◽  
Matthew L. Workentine ◽  
...  

AbstractMicroglia play an important role in the pathogenesis of multiple sclerosis and the mouse model of MS, experimental autoimmune encephalomyelitis (EAE). To more fully understand the role of microglia in EAE we characterized microglial transcriptomes before the onset of motor symptoms (pre-onset) and during symptomatic EAE. We compared the transcriptome in brain, where behavioral changes are initiated, and spinal cord, where damage is revealed as motor and sensory deficits. We used a RiboTag strategy to characterize ribosome-bound mRNA only in microglia without incurring possible transcriptional changes after cell isolation. Brain and spinal cord samples clustered separately at both stages of EAE, indicating regional heterogeneity. Differences in gene expression were observed in the brain and spinal cord of pre-onset and symptomatic animals with most profound effects in the spinal cord of symptomatic animals. Canonical pathway analysis revealed changes in neuroinflammatory pathways, immune functions and enhanced cell division in both pre-onset and symptomatic brain and spinal cord. We also observed a continuum of many pathways at pre-onset stage that continue into the symptomatic stage of EAE. Our results provide additional evidence of regional and temporal heterogeneity in microglial gene expression patterns that may help in understanding mechanisms underlying various symptomology in MS.


Sign in / Sign up

Export Citation Format

Share Document