Respiratory Failure and Mechanical Ventilation

Author(s):  
Jan Hau Lee ◽  
Ira M. Cheifetz

This chapter on respiratory failure and mechanical ventilation provides essential information about how to support children with severe respiratory disorders. The authors discuss multiple modes of respiratory support, including high-flow nasal cannula oxygen, noninvasive ventilation with continuous positive airway pressure and bilevel positive airway pressure, as well as conventional, high-frequency, and alternative modes of invasive ventilation. The section on invasive mechanical ventilation includes key information regarding gas exchange goals, modes of ventilation, patient–ventilator interactions, ventilator parameters (including tidal volume, end-expiratory pressure, and peak plateau pressure), extubation readiness testing, and troubleshooting. The authors also provide the new consensus definition of pediatric acute respiratory distress syndrome. Also included are multiple figures and indispensable information on adjunctive therapies (inhaled nitric oxide, surfactant, prone positioning, and corticosteroids) and respiratory monitoring (including capnography and airway graphics analysis).

2020 ◽  
Vol 1 (2) ◽  
pp. 91-100
Author(s):  
Eva Marti

Background: Cardiogenic Pulmo edema can cause a heterogeneous syndrome with a mortality rate of up to 9.5% (Aliberti et all., 2018).Objective: The purpose of this paper was to explain how effective the use of non-invasive mechanical ventilation in patients with acute pulmonary edema with respiratory failure. Methods: The literature review was compiled by synthesizing and comparing various relevant scientific articles from the literature search results using the online database of Proquest and Clinicalkey Elsevier that have significance related to the management of acute cardiogenic pulmo edema. Result: Compared with conservative therapy,  noninvasive mechanical ventilation has been shown more effective in improving oxygenation in patients with acute cardiogenic pulmo edema Non-invasive ventilation can reduce dyspnea, acidosis and hypercapnea faster than standard oxygen therapy. Studies show that compared to endotracheal intubation, non-invasive mechanical ventilation is associated with a lower risk of nosocomial infection, lower antibiotic use, shorter length of stay in intensive care units and lower mortality. Study found that there were no differences betwen the two setting of non-invasive mechanical ventilation used, Bilevel positive Airway Pressure (BiPAP) and Continues positive Airway Pressure (CPAP) in  patients outcomes. However, there are absolute and relative contraindications that must be considered, including the effectiveness of the therapy being insignificant when given too late Conclusion: Noninvasive mechanical ventilation can be considered as the first choice in the management of acute cardiogenic pulmonary edema because of its high clinical effectiveness representing a rescue action for patients not improving with conventional oxygen therapy.


Diagnostics ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2259
Author(s):  
Barbara Bonnesen ◽  
Jens-Ulrik Stæhr Jensen ◽  
Klaus Nielsen Jeschke ◽  
Alexander G. Mathioudakis ◽  
Alexandru Corlateanu ◽  
...  

Patients admitted to hospital with coronavirus disease 2019 (COVID-19) may develop acute respiratory failure (ARF) with compromised gas exchange. These patients require oxygen and possibly ventilatory support, which can be delivered via different devices. Initially, oxygen therapy will often be administered through a conventional binasal oxygen catheter or air-entrainment mask. However, when higher rates of oxygen flow are needed, patients are often stepped up to high-flow nasal cannula oxygen therapy (HFNC), continuous positive airway pressure (CPAP), bilevel positive airway pressure (BiPAP), or invasive mechanical ventilation (IMV). BiPAP, CPAP, and HFNC may be beneficial alternatives to IMV for COVID-19-associated ARF. Current evidence suggests that when nasal catheter oxygen therapy is insufficient for adequate oxygenation of patients with COVID-19-associated ARF, CPAP should be provided for prolonged periods. Subsequent escalation to IMV may be implemented if necessary.


2021 ◽  
Author(s):  
Allan Cameron ◽  
Sharif Fattah ◽  
Laura Knox ◽  
Pauline Grose

Abstract Background - During the winter of 2020-2021, the second wave of the COVID19 pandemic in the United Kingdom caused increased demand for intensive care unit (ICU) beds, and in particular, for invasive mechanical ventilation (IMV). To alleviate some of this pressure, some centres offered non-invasive continuous positive airway pressure (CPAP), delivered on specialised COVID high dependency units (cHDUs). However, this practice was based largely on anecdotal reports, and it is not clear from the literature how effective CPAP is at delaying or preventing IMV. Methods - This was a retrospective observational cohort study of consecutive patients admitted to a specialised cHDU at Glasgow Royal Infirmary between November 2020 and February 2021. Each patient had a continuous record of the level of respiratory support required, and was followed up to hospital discharge or death. We examined patient outcomes according to age, sex and maximum level of respiratory support, using logistic regression and time-to-event analysis. The number of patients who could not be oxygenated by standard oxygen facemask but could be oxygenated by CPAP was counted and compared to the number of patients admitted to ICU for IMV over the same period.Results - There were 152 admissions to cHDU over the study period. Of these, 125 received CPAP treatment. Of the patients who received support in cHDU, the overall mortality rate was 37.9% (95% CI 30.3% - 46.1%)). Odds of mortality were closely correlated with increasing age and oxygen requirement. Of the 152 patients, 44 patients (28.8%, 95% CI 22.0 – 36.9%) went on to require IMV in ICU. This represents 77.2% of the 57 COVID-19 admissions to ICU during the same period. However, there were also 41 patients who received levels of respiratory support on cHDU which would normally necessitate ICU admission but who never went to ICU, potentially reducing ICU admissions by 41.8% (95% CI 32.1 – 52.2%).Conclusion - Providing respiratory support in cHDU reduced the number of potential ICU admissions by 41.8%, as well as delaying IMV for over 75% of ICU admissions. This represents a significant sparing of ICU capacity at a time when IMV beds were in high demand.


2018 ◽  
Vol 65 (4) ◽  
pp. 352-360 ◽  
Author(s):  
Mesut Dursun ◽  
Sinan Uslu ◽  
Ali Bulbul ◽  
Muhittin Celik ◽  
Umut Zubarioglu ◽  
...  

Abstract Aims To compare the effect of early nasal intermittent positive pressure ventilation (nIPPV) and nasal continuous positive airway pressure (nCPAP) in terms of the need for endotracheal ventilation in the treatment of respiratory distress syndrome (RDS) in preterm infants born between 24 and 32 gestational weeks. Methods This is a randomized, controlled, prospective, single-centered study. Forty-two infants were randomized to nIPPV and 42 comparable infants to nCPAP (birth weight 1356 ± 295 and 1359 ± 246 g and gestational age 29.2 ± 1.7 and 29.4 ± 1.5 weeks, respectively). Results The need for endotracheal intubation and invasive mechanical ventilation was significantly lower in the nIPPV group than the nCPAP group (11.9% and 40.5%, respectively, p < 0.05). There were no differences in the duration of total nasal respiratory support, duration of invasive mechanical ventilation, bronchopulmonary dysplasia or other early morbidities. Conclusion nIPPV compared with nCPAP reduced the need for endotracheal intubation and invasive mechanical ventilation in premature infants with RDS.


Sign in / Sign up

Export Citation Format

Share Document