scholarly journals The globular cluster M10: reassessment of stellar membership, distance, and age using its variable and HB stars

2020 ◽  
Vol 499 (3) ◽  
pp. 4026-4039
Author(s):  
A Arellano Ferro ◽  
M A Yepez ◽  
S Muneer ◽  
I H Bustos Fierro ◽  
K P Schröder ◽  
...  

ABSTRACT Time-series VI CCD photometry of the globular cluster M10 (NGC 6254) is employed to perform a detailed identification, inspection of their light curves, their classification, and their cluster membership, of all the known variables reported up to 2018. The membership analysis is based on the $Gaia$-DR2 positions and proper motions. The metallicity of the cluster is estimated based on the sole RRc star known in the cluster. The Fourier decomposition of its light curve leads to [Fe/H]$_{\rm ZW}$ = $-1.59 \pm 0.23$ dex. The mean cluster distance, estimated by several independent methods, is $5.0 \pm 0.3$ kpc. A multiapproach search in a region of about 10$\times$10 arcmin$^2$ around the cluster revealed three new variables, one SX Phe (V35) and two sinusoidal variables on the red giant branch (RGB) of unclear classification (V36 and V37). Modelling the HB stars is very sensitive to the stellar hydrogen shell mass, which surrounds the 0.50 $\mathrm{ M}_{\odot }$ helium core. To match the full stretch of the HB population, a range of total mass of 0.56–0.62 $\mathrm{ M}_{\odot }$ is required. These models support a distance of 5.35 kpc and an age of about 13 Gyr, and hint to some individual variation of the mass-loss on the upper RGB, perhaps caused by the presence of closed magnetic field in red giants.

2018 ◽  
Vol 616 ◽  
pp. A24 ◽  
Author(s):  
C Gehan ◽  
B. Mosser ◽  
E. Michel ◽  
R. Samadi ◽  
T. Kallinger

Context. Asteroseismology allows us to probe stellar interiors. In the case of red giant stars, conditions in the stellar interior are such as to allow for the existence of mixed modes, consisting in a coupling between gravity waves in the radiative interior and pressure waves in the convective envelope. Mixed modes can thus be used to probe the physical conditions in red giant cores. However, we still need to identify the physical mechanisms that transport angular momentum inside red giants, leading to the slow-down observed for red giant core rotation. Thus large-scale measurements of red giant core rotation are of prime importance to obtain tighter constraints on the efficiency of the internal angular momentum transport, and to study how this efficiency changes with stellar parameters. Aims. This work aims at identifying the components of the rotational multiplets for dipole mixed modes in a large number of red giant oscillation spectra observed by Kepler. Such identification provides us with a direct measurement of the red giant mean core rotation. Methods. We compute stretched spectra that mimic the regular pattern of pure dipole gravity modes. Mixed modes with the same azimuthal order are expected to be almost equally spaced in stretched period, with a spacing equal to the pure dipole gravity mode period spacing. The departure from this regular pattern allows us to disentangle the various rotational components and therefore to determine the mean core rotation rates of red giants. Results. We automatically identify the rotational multiplet components of 1183 stars on the red giant branch with a success rate of 69% with respect to our initial sample. As no information on the internal rotation can be deduced for stars seen pole-on, we obtain mean core rotation measurements for 875 red giant branch stars. This large sample includes stars with a mass as large as 2.5 M⊙, allowing us to test the dependence of the core slow-down rate on the stellar mass. Conclusions. Disentangling rotational splittings from mixed modes is now possible in an automated way for stars on the red giant branch, even for the most complicated cases, where the rotational splittings exceed half the mixed-mode spacing. This work on a large sample allows us to refine previous measurements of the evolution of the mean core rotation on the red giant branch. Rather than a slight slow-down, our results suggest rotation is constant along the red giant branch, with values independent of the mass.


1978 ◽  
Vol 80 ◽  
pp. 273-276
Author(s):  
Sidney van den Bergh

A quarter of a century ago Keenan and Keller (1953) showed that the majority of high-velocity stars near the Sun outline a Hertzsprung-Russell diagram similar to that of old Population I. This result, which did not appear to fit into Baade's (1944) two-population model of the Galaxy was ignored (except by Roman 1965) for the next two decades. Striking confirmation of the results of Keenan and Keller was, however, obtained by Hartwick and Hesser (1972). Their work appears to show that high-velocity field stars with an ultraviolet excess (which measures Fe/H) of δ(U-B) ≃ +0m.11 lie on a red giant branch that is more than a magnitude fainter than the giant branch of the strong-lined globular cluster 47 Tuc for which δ(U-B) ≃ +0m.10. Furthermore Demarque and McClure (1977) show that the red giants in the old metal poor [δ(U-B) ≃ +0m.11] open cluster NGC 2420 are significantly fainter than are those in 47 Tuc. Calculations by these authors show that the observed differences between the giants in 47 Tuc and in NGC 2420 can be explained if either (1) 47 Tuc is richer in helium than NGC 2420 by ΔY ≃ 0.1 or (2) if 47 Tuc has a ten times lower value of Z(CNO) than does NGC 2420.


1986 ◽  
Vol 116 ◽  
pp. 513-514
Author(s):  
Cesare Chiosi ◽  
Luisa Pigatto

Deep CCD photometry of the star clusters NGC2162 and NGC2190 in LMC presented by Schommer et al. (1984) is used togheter with new evolutionary models computed by Bertelli et al. (1985a) which take into account overshooting from convective cores, to derive the clusters ages and the distance modulus of LMC. A preliminary analysis of the two clusters indicates that NGC 2162 and NGC 2190 belong to the same class of clusters discussed by Barbaro and Pigatto (1984). In fact, for the turn-off mass estimated by means of classical models (<2.2m⊙) these clusters should possess an extended red giant branch and a bimodal distribution of red stars (cifr. Fig.2). On the contrary they show a clump of red stars. This means that ages and other properties derived from classical models for this range of masses, may not correspond to reality. With the new models, stars of mass as low as 1.6 m⊙, ignite helium in non degenerate conditions, avoid the long lived RG phase, and burn helium as more massive stars. As consequence of it, a clump of red giants is expected. In Fig.1, we show new isochrones (Bertelli et al. 1985b) derived from models with overshooting, overlaid to the CM diagram of NGC 2162. Theoretical luminosities and Teff's are converted into Mv:(B-V)o plane by means of Teff:(B-V):BC scales based on models atmospheres collected from several authors (Chiosi, 1985). At any given age, the new isochrones run brighter than those of Ciardullo and Demarque (1977). By means of the luminosity function, a method more objective (Paczsynski, 1984) than the standard one of ZAMS and/or isochrone fitting, with a reddening of E(B-V)=0.06 and chemical composition X=0.700 and Z=0.02, we find ages of 1 109yr and a true distance modulus of (m-M)O=18.6 instead of 18.2±0.2 mag given by Schommer et al.(1984). Fig.2 shows the theoretical luminosity function at age 1 109yr, (age preliminarly assigned to the clusters by isochrone fitting) for main sequence and red giant stars obtained with Salpeter's IMF (top panel), compares it with the correspondent one of Ciardullo and Demarque(1977), and finally shows the observational LF we derive from stars counts(bottom panel) for NGC 2162. By imposing coincidence between theoretical and observational LF's at the side of main sequence fall-off and rising of the red giant clump, we derive the distance modulus (m-M)O=18.6. In conclusions, models with overshooting not only interpret the morphology of this class of clusters, but assigne LMC a distance modulus in agreement with other independent determinations (Walker, 1984; Visvanathan, 1985).


1995 ◽  
Vol 164 ◽  
pp. 411-411
Author(s):  
W.K. Griffiths ◽  
I.N. Kanatas ◽  
R.J. Dickens ◽  
A.J. Penny

A V, B- V composite colour-magnitude diagram, based upon CCD photometry from V~ 12 on the red giant branch to V~ 25 on the main-sequence has been derived for the globular cluster M4. A distance to the cluster of (m – M)v = 12.84 ± 0.19 is determined and the best match to theoretical isochrones is for the case [Fe/H]=−1.27 and an age of 16±1 Gyr. A differential age comparison with NGC 362 shows that M4 is approximately 1.7 Gyr older.


2020 ◽  
Vol 494 (3) ◽  
pp. 3212-3226 ◽  
Author(s):  
M A Yepez ◽  
A Arellano Ferro ◽  
D Deras

ABSTRACT We present an analysis of VI CCD time-series photometry of the Oo II type globular cluster M92. The variable star population of the cluster is studied with the aim of revising their classifications, identifications, frequency spectra, and to select indicators of the parental cluster metallicity and distance. The Fourier decomposition of RR Lyrae light curves lead to the estimation of mean [Fe/H]spec = −2.20 ± 0.18 and distance of 8.3 ± 0.2 kpc. Four new variables are reported: one RRd (V40), a multimode SX Phe (V41), an SR (V42), and one RRc (F1) that is most likely not a cluster member. The AC nature of V7 is confirmed. The double mode nature of the RRc star V11 is not confirmed and its amplitude modulations are most likely due to the Blazhko effect. Two modes are found in the known RRc variable V13. It is argued that the variable V30, previously classified as RRab is, in fact, a BL Her-type star not belonging to the cluster. Using the Gaia-DR2 proper motions, we identified 5012 stars in the field of the cluster, which are very likely cluster members, and for which we possess photometry, enabling the production of a refined colour–magnitude diagram. This also allowed us to identify a few variable stars that do not belong to the cluster. The RR Lyrae pulsation modes on the HB are cleanly separated by the first overtone red edge, a common feature in all Oo II-type clusters.


1980 ◽  
Vol 5 ◽  
pp. 817-826
Author(s):  
B. E. J. Pagel

SummaryThis review concerns recent work on the determination of overall metallicities [Fe/H] in a number of globular clusters and the systematics of mixing effects displayed (usually) by weak CH and strong CN. Special attention is given to the globular cluster ω Centauri, where both metal abundance variations and mixing effects occur and are closely intertwined. Recent observations carried out at the Anglo-Australian Telescope by E.A. Mallia and D.C. Watts have revealed large variations in the strength of metallic lines across the red giant branch of this cluster.


1980 ◽  
Vol 85 ◽  
pp. 231-232
Author(s):  
M. Grenon

The metal abundances of young stellar groups in the solar vicinity are obtained from the photometric [Fe/H] ratios observed for the red giant group members. The definition of the groups has been rediscussed with the help of a sample of B5-A0 stars whose physical properties are derived by Cramer (1979). The young G3-K5 giants have been selected according to their spatial velocities and their age derived from the Geneva colours (Grenon 1978). They show the kinematics of A stars (Eggen 1963). The star concentrations coincide in both (U,V) planes (red giants and B & A stars) in the zones listed below with the value of the mean [Fe/H] and galactocentric distance, .


2019 ◽  
Vol 55 (2) ◽  
pp. 337-350 ◽  
Author(s):  
A. Arellano Ferro ◽  
I. H. Bustos Fierro ◽  
J. H. Calderón ◽  
J. A. Ahumada

Time-series VI CCD photometry of the globular cluster NGC 1261 is employed to study its variable star population. A membership analysis of most variables based on Gaia DR2 proper motions and colours was performed prior to the estimation of the mean cluster distance and metallicity. The light curves of the member RR Lyrae were Fourier decomposed to calculate their individual values of distance, [Fe/H], radius and mass. The I band P-L for RR Lyrae stars was also employed. Our best estimates of the metallicity and distance of this Oo I cluster are [Fe/H]ZW =−1.42 ± 0.05 dex and d = 17.2 ± 0.4 kpc. No mixture of fundamental and first overtone RR Lyrae stars in the either-or or bimodal region is seen in this cluster, as it seems to be the rule for Oo I clusters with a red horizontal branch. A multi-approach search in a region of about 10' × 10' around the cluster revealed no new variable stars within the limitations of our CCD photometry.


2009 ◽  
Vol 26 (3) ◽  
pp. 203-208 ◽  
Author(s):  
Richard J. Stancliffe ◽  
Alessandro Chieffi ◽  
John C. Lattanzio ◽  
Ross P. Church

AbstractWe revisit the problem of why stars become red giants. We modify the physics of a standard stellar evolution code in order to determine what does and what does not contribute to a star becoming a red giant. In particular, we have run tests to try to separate the effects of changes in the mean molecular weight and in the energy generation. The implications for why stars become red giants are discussed. We find that while a change in the mean molecular weight is necessary (but not sufficient) for a 1-M⊙ star to become a red giant, this is not the case in a star of 5 M⊙. It therefore seems that there may be more than one way to make a giant.


1996 ◽  
Vol 169 ◽  
pp. 435-436 ◽  
Author(s):  
Myung Gyoon Lee

AM-2 is a sparse cluster located at low galactic latitude. It has been suspected to be a globular cluster. We present a study of AM-2 based on the deep UBVI CCD photometry obtained using the Las Campanas duPont 2.5m telescope. The color-magnitude diagrams of AM-2 show (a) a main-sequence extending up to V ≈ 19 mag at (B – V) ≈ 1.1 mag, (b) a small number of red giant clump giants, (c) the brightest red giant at V ≈ 16.1 mag and (B – V) ≈ 1.9 mag, and (d) a small group of mysterious blue stars at V ≈ 16.6 mag and (B – V) ≈ 0.9 mag. We have estimated the reddening using the color-color diagram, E(B – V) = 0.56 ± 0.04. The metallicity of the main-sequence stars has been estimated from the ultraviolet excess, δ(U – B)0.6 = 0.09 ± 0.04, to be [Fe/H] = −0.4 ± 0.2 dex. The distance to the cluster has been measured using the Zero-Age-Main-Sequence fitting method, (m – M)0 = 14.8 ± 0.3 (d = 9.1 ± 1.4 kpc). Finally we have estimated the age of the cluster using the Revised Yale isochrones and the Morphological Age Ratio (MAR) method, obtaining a value of 5 ± 1 Gyrs (Fig. 1). This shows that AM-2 is not a globular cluster, but an old open cluster.


Sign in / Sign up

Export Citation Format

Share Document