scholarly journals The Y dwarf population with HST: unlocking the secrets of our coolest neighbours – I. Overview and first astrometric results

2020 ◽  
Vol 501 (1) ◽  
pp. 911-915
Author(s):  
C Fontanive ◽  
L R Bedin ◽  
D C Bardalez Gagliuffi

ABSTRACT In this paper, we present our project that aims at determining accurate distances and proper motions for the Y brown dwarf population using the Hubble Space Telescope. We validate the program with our first results, using a single new epoch of observations of the Y0pec dwarf WISE J163940.83−684738.6. These new data allowed us to refine its proper motion and improve the accuracy of its parallax by a factor of three compared to previous determinations, now constrained to ϖ = 211.11 ± 0.56 mas. This newly derived absolute parallax corresponds to a distance of 4.737 ± 0.013 pc, an exquisite and unprecedented precision for faint ultracool Y dwarfs.

2007 ◽  
Vol 3 (S248) ◽  
pp. 244-247 ◽  
Author(s):  
S. Piatek ◽  
C. Pryor

AbstractOver the past several years, our research group has been measuring proper motions for nearby dwarf satellite galaxies using data taken with the Hubble Space Telescope. In order to measure proper motions with an expected size of several tens of milliarcseconds per century using a time baseline of 2-4 years, our work required that positions of stars and QSOs be measured to an accuracy of ~0.25 mas (~0.005 pixel). This contribution reviews the scientific justification of this work and our methodology. It concludes with a few general results and future directions.


2003 ◽  
Vol 211 ◽  
pp. 523-524
Author(s):  
Karl Stapelfeldt

The proposed Eclipse Discovery mission is an optical space telescope designed to provide a thousandfold reduction in scattered light near bright stars in comparison to any Hubble Space Telescope instrument. A survey of 500 single stars within 15 pc can detect companions with absolute z magnitude of 22 at separations > 10 AU in most of the targets. Spectrophotometry of CH4 and H2O bands between 0.8-1.0 μm can be used to derive the effective temperatures of the objects. The ECLIPSE brown dwarf survey would directly measure the luminosity function of brown dwarf companions down to ~20 Jupiter masses, providing a crucial comparison with field objects.


2019 ◽  
Vol 14 (S351) ◽  
pp. 324-328
Author(s):  
Mattia Libralato

AbstractSpectroscopy and photometry have revealed existence, complexity and properties of the multiple stellar populations (mPOPs) hosted in Galactic globular clusters. However, the conundrum of the formation and evolution of mPOPs is far from being completely exploited: the available pieces of information seem not enough to shed light on these topics. Astrometry, and in particular high-precision proper motions, can provide us the sought-after answers about how mPOPs formed and have evolved in these ancient stellar systems. In the following, I present a brief overview of the observational results on the internal kinematics of the mPOPs in some GCs thanks to Hubble Space Telescope high-precision proper motions.


2007 ◽  
Vol 3 (S248) ◽  
pp. 102-103 ◽  
Author(s):  
J. Faherty ◽  
K. Cruz ◽  
A. Burgasser ◽  
F. Walter ◽  
M. Shara

AbstractWe report on the progress of the Brown Dwarf Kinematics Project (BDKP), which aims to measure the 6D positions and velocities of all known brown dwarfs within 20 pc of the Sun and select sources of scientific interest. In this paper we report on the status of the 33 targets on our parallax list as well as the results of our proper motion survey where we have measured over 400 new proper motions for known late M, L and T dwarfs.


2012 ◽  
Vol 760 (2) ◽  
pp. L31 ◽  
Author(s):  
Esther Buenzli ◽  
Dániel Apai ◽  
Caroline V. Morley ◽  
Davin Flateau ◽  
Adam P. Showman ◽  
...  

2020 ◽  
Vol 500 (2) ◽  
pp. 2012-2019
Author(s):  
Davide Massari ◽  
Silvia Raso ◽  
Mattia Libralato ◽  
Andrea Bellini

ABSTRACT We present Hubble Space Telescope proper motions in the direction of the star cluster NGC 419 in the Small Magellanic Cloud. Because of the high precision of our measurements, for the first time it is possible to resolve the complex kinematics of the stellar populations located in the field, even along the tangential direction. In fact, the proper motions we measured allow us to separate cluster stars, which move on average with ($\mu _{\alpha }\cos \delta ^{\rm NGC\, 419}, \mu _{\delta }^{\rm NGC\, 419}$) = (+0.878 ± 0.055, −1.246 ± 0.048) mas yr−1, from those of the Small Magellanic Cloud and those belonging to a third kinematic feature that we recognize as part of the Magellanic Bridge. Resolving such a kinematic complexity enables the construction of decontaminated colour–magnitude diagrams, as well as the measurement of the absolute proper motion of the three separate components. Our study therefore sets the first steps towards the possibility of dynamically investigating the Magellanic system by exploiting the resolved kinematics of its stellar clusters.


Sign in / Sign up

Export Citation Format

Share Document