scholarly journals When the disc’s away, the stars will play: dynamical masses in the nova-like variable KR Aur with a pinch of accretion

2020 ◽  
Vol 494 (1) ◽  
pp. 425-441 ◽  
Author(s):  
P Rodríguez-Gil ◽  
T Shahbaz ◽  
M A P Torres ◽  
B T Gänsicke ◽  
P Izquierdo ◽  
...  

ABSTRACT We obtained time-resolved optical photometry and spectroscopy of the nova-like variable KR  Aurigae in the low state. The spectrum reveals a DAB white dwarf (WD) and a mid-M dwarf companion. Using the companion star’s i-band ellipsoidal modulation we refine the binary orbital period to be P = 3.906519 ± 0.000001 h. The light curve and the spectra show flaring activity due to episodic accretion. One of these events produced brightness oscillations at a period of 27.4 min, that we suggest to be related with the rotation period of a possibly magnetic WD at either 27.4 or 54.8 min. Spectral modelling provided a spectral type of M4–5 for the companion star and $T_{1}=27\, 148$ $\pm \, 496$ K, $\log \, g=8.90 \pm 0.07$, and $\log (\mathrm{He/H})= -0.79^{+0.07}_{-0.08}$ for the WD. By simultaneously fitting absorption- and emission-line radial velocity curves and the ellipsoidal light curve, we determined the stellar masses to be $M_1 = 0.94^{+0.15}_{-0.11}\, {\rm{M}_{\rm \odot}}$ and $M_2 = 0.37^{+0.07}_{-0.07}\,{\rm{M}_{\rm \odot}}$ for the WD and the M-dwarf companion, respectively, and an orbital inclination of $47^{+1^{\rm o}}_{-2^{\rm o}}$. Finally, we analyse time-resolved spectroscopy acquired when the system was at an i-band magnitude of 17.1, about 1.3 mag brighter than it was in the low state. In this intermediate state, the line profiles contain an emission S-wave delayed by ≃0.2 orbital cycle relative to the motion of the WD, similar to what is observed in SW Sextantis stars in the high state.

2018 ◽  
Vol 609 ◽  
pp. A106 ◽  
Author(s):  
F. Taddia ◽  
J. Sollerman ◽  
C. Fremling ◽  
E. Karamehmetoglu ◽  
R. M. Quimby ◽  
...  

Aims. We study PTF11mnb, a He-poor supernova (SN) whose light curves resemble those of SN 2005bf, a peculiar double-peaked stripped-envelope (SE) SN, until the declining phase after the main peak. We investigate the mechanism powering its light curve and the nature of its progenitor star. Methods. Optical photometry and spectroscopy of PTF11mnb are presented. We compared light curves, colors and spectral properties to those of SN 2005bf and normal SE SNe. We built a bolometric light curve and modeled this light curve with the SuperNova Explosion Code (SNEC) hydrodynamical code explosion of a MESA progenitor star and semi-analytic models. Results. The light curve of PTF11mnb turns out to be similar to that of SN 2005bf until ~50 d when the main (secondary) peaks occur at −18.5 mag. The early peak occurs at ~20 d and is about 1.0 mag fainter. After the main peak, the decline rate of PTF11mnb is remarkably slower than what was observed in SN 2005bf, and it traces well the 56Co decay rate. The spectra of PTF11mnb reveal a SN Ic and have no traces of He unlike in the case of SN Ib 2005bf, although they have velocities comparable to those of SN 2005bf. The whole evolution of the bolometric light curve is well reproduced by the explosion of a massive (Mej = 7.8 M⊙), He-poor star characterized by a double-peaked 56Ni distribution, a total 56Ni mass of 0.59 M⊙, and an explosion energy of 2.2 × 1051 erg. Alternatively, a normal SN Ib/c explosion (M(56Ni) = 0.11 M⊙, EK = 0.2 × 1051 erg, Mej = 1 M⊙) can power the first peak while a magnetar, with a magnetic field characterized by B = 5.0 × 1014 G, and a rotation period of P = 18.1 ms, provides energy for the main peak. The early g-band light curve can be fit with a shock-breakout cooling tail or an extended envelope model from which a radius of at least 30 R⊙ is obtained. Conclusions. We presented a scenario where PTF11mnb was the explosion of a massive, He-poor star, characterized by a double-peaked 56Ni distribution. In this case, the ejecta mass and the absence of He imply a large ZAMS mass (~85 M⊙) for the progenitor, which most likely was a Wolf-Rayet star, surrounded by an extended envelope formed either by a pre-SN eruption or due to a binary configuration. Alternatively, PTF11mnb could be powered by a SE SN with a less massive progenitor during the first peak and by a magnetar afterward.


2019 ◽  
Vol 490 (4) ◽  
pp. 5921-5930 ◽  
Author(s):  
Tahina Ramiaramanantsoa ◽  
Richard Ignace ◽  
Anthony F J Moffat ◽  
Nicole St-Louis ◽  
Evgenya L Shkolnik ◽  
...  

ABSTRACT Among Wolf–Rayet stars, those of subtype WN8 are the intrinsically most variable. We have explored the long-term photometric variability of the brightest known WN8 star, WR 40, through four contiguous months of time-resolved, single-passband optical photometry with the BRIght Target Explorer nanosatellite mission. The Fourier transform of the observed light curve reveals that the strong light variability exhibited by WR 40 is dominated by many randomly triggered, transient, low-frequency signals. We establish a model in which the whole wind consists of stochastic clumps following an outflow visibility promptly rising to peak brightness upon clump emergence from the optically thick pseudo-photosphere in the wind, followed by a gradual decay according to the right-half of a Gaussian. Free electrons in each clump scatter continuum light from the star. We explore a scenario where the clump size follows a power-law distribution, and another one with an ensemble of clumps of constant size. Both scenarios yield simulated light curves morphologically resembling the observed light curve remarkably well, indicating that one cannot uniquely constrain the details of clump size distribution with only a photometric light curve. Nevertheless, independent evidence favours a negative-index power law, as seen in many other astrophysical turbulent media.


1996 ◽  
Vol 152 ◽  
pp. 331-335
Author(s):  
S.R. Rosen ◽  
J.P.D. Mittaz ◽  
D.A.H. Buckley ◽  
A. Layden ◽  
C. McCain ◽  
...  

We present results of EUVE spectrophotometry of the EUV luminous polar, QS Tel (RE1938-461), together with contemporaneous optical photometry and spectroscopy. In marked contrast to the ROSAT survey observations, the EUVE light curve shows two flux maxima per orbital cycle, implying that both magnetic poles were active. A deep, narrow dip is observed during one of the two flux maxima, exhibiting a complex morphology which includes pronounced flickering behaviour. Although this feature is probably caused by stream occultation of the emission region, the apparent lack of spectral hardening at this time disfavours photoelectric absorption by cold gas as the dominant source of opacity. Whilst the overall EUVE spectrum can be characterized by a low temperature (~15eV) blackbody, implying a large soft/hard component flux ratio (~50), tentative evidence of an absorption edge from NeVI at 85A and lines due to NeVIII and NeVII at 98Å and 116Å respectively indicate that more sophisticated models must be employed. Quasi-simultaneous optical photometry shows a substantial change in the light curve over an interval of just 3 days and little evidence of correlated behaviour with the EUV flux. We consider the implications of these results on the accretion geometry and the structure of the accretion flow.


1998 ◽  
Vol 11 (1) ◽  
pp. 419-420
Author(s):  
David W. Latham

What is known about the masses of main-sequence stars from the analysis of binary orbits? Double-lined eclipsing binaries are the main source of very precise stellar masses and radii (e.g. Andersen 1997), contributing more than 100 determinations with better than 2% precision over the range 0.6 to 20 Mʘ. For lower-mass stars we are forced to turn to nearby systems with astrometric orbits (e.g. Henry et al. 1993). Not only is the number of good mass determinations from such systems smaller, but also the precision is generally poorer. We are approaching an era when interferometers should have a major impact by supplying good astrometric orbits for dozens of double-lined systems. Already we are beginning to see the sorts of results to expect from this (e.g. Torres et al. 1997). Figure 1. Mass vs. absolute V magnitude for eclipsing binaries (circles) and nearby astrometric binaries (squares) Figure 1 is an updated version of a diagram presented by Henry et al. (1993, their Figure 2). It shows the general run of mass determinations from about 10 Mʘ down to the substellar limit near 0.075 Mʘ. Ninety of the points in Figure 1 are for eclipsing binary masses from Andersen’s review (1991) and are plotted as open circles. The results for eclipsing binaries published since 1991 are plotted as 30 filled circles, adopting the same limit of 2% for the mass precision. In most cases the uncertainties are similar to the size of the symbols. Especially noteworthy is the pair of new points for CM Draconis (Metcalfe et al. 1996) with masses near 0.25 Mʘ. Together with the points for YY Geminorum near 0.6 Mʘ, these are the only M dwarfs that have precise mass determinations. For the most part we are forced to rely on nearby stars with astrometric orbits, to fill in the M dwarf region of the diagram. We have used filled squares in Figure 1 for 29 such systems from Henry et al. (1993), updated using 14 new parallaxes from Hipparcos and 4 from the new Yale Parallax Catalog (1995). Gliese 508 is not included, because it is now known to be a triple, while Gliese 67AB, 570BC, and 623AB are not included because there are not yet any direct measurements of the V magnitude difference for these systems.


2012 ◽  
Vol 8 (S287) ◽  
pp. 98-102
Author(s):  
Kazuhito Motogi ◽  
Kazuo Sorai ◽  
Kenta Fujisawa ◽  
Koichiro Sugiyama ◽  
Mareki Honma

AbstractThe water maser site associated with G353.273+0.641 is classified as a dominant blueshifted H2O maser, which shows an extremely wide velocity range (± 100 km s−1) with almost all flux concentrated in the highly blueshifted emission. The previous study has proposed that this peculiar H2O maser site is excited by a pole-on jet from high mass protostellar object. We report on the monitoring of 22-GHz H2O maser emission from G353.273+0.641 with the VLBI Exploration of Radio Astrometry (VERA) and the Tomakamai 11-m radio telescope. Our VLBI imaging has shown that all maser features are distributed within a very small area of 200 × 200 au2, in spite of the wide velocity range (> 100 km s−1). The light curve obtained by weekly single-dish monitoring shows notably intermittent variation. We have detected three maser flares during three years. Frequent VLBI monitoring has revealed that these flare activities have been accompanied by a significant change of the maser alignments. We have also detected synchronized linear acceleration (−5 km s−1yr−1) of two isolated velocity components, suggesting a lower-limit momentum rate of 10−3 M⊙ km s−1yr−1 for the maser acceleration. All our results support the previously proposed pole-on jet scenario, and finally, a radio jet itself has been detected in our follow-up ATCA observation. If highly intermittent maser flares directly reflect episodic jet-launchings, G353.273+0.641 and similar dominant blueshifted water maser sources can be suitable targets for a time-resolved study of high mass protostellar jet.


1986 ◽  
Vol 6 (3) ◽  
pp. 306-308 ◽  
Author(s):  
D. J. Watts ◽  
R. D. Watson

AbstractA complete orbital light-curve of V2051 Oph in the IR H band is presented, together with a second eclipse in the J band. Simultaneous Rc band data were obtained. Eclipse depths in Rc, J and H are 1.8 mag, 1.0 mag and 0.8 mag respectively. No evidence for ellipsoidal variations due to the secondary was seen and constraints on the secondary are discussed.


2021 ◽  
Author(s):  
Lena Noack ◽  
Kristina Kislyakova ◽  
Colin Johnstone ◽  
Manuel Güdel ◽  
Luca Fossati

<p>Since the discovery of a potentially low-mass exoplanet around our nearest neighbour star Proxima Centauri, several works have investigated the likelihood of a shielding atmosphere and therefore the potential surface habitability of Proxima Cen b. However, outgassing processes are influenced by several different (unknown) factors such as the actual planet mass, mantle and core composition, and different heating mechanisms in the interior.<br>We aim to identify the critical parameters that influence the mantle and surface evolution of the planet over time, as well as to potentially constrain the time-dependent input of volatiles from mantle into the atmosphere.</p><p><br>To study the coupled star-planet evolution, we analyse the heating produced in the interior of Proxima Cen b due to induction heating, which strongly varies with both depth and latitude. We calculate different rotation evolutionary tracks for Proxima Centauri and investigate the change in its rotation period and magnetic field strength. Unlike the Sun, Proxima Centauri possesses a very strong magnetic field of at least a few hundred Gauss, which was likely higher in the past. <br>We apply an interior structure model for varying planet masses (derived from the unknown inclination of observation of the Proxima Centauri system) and iron weight fractions, i.e. different core sizes, in the range of observed Fe-Mg variations in the stellar spectrum. <br>We use a mantle convection model to study the thermal evolution and outgassing efficiency of Proxima Cen b. For unknown planetary parameters such as initial conditions we chose randomly selected values. We take into account heating in the interior due to variable radioactive heat sources and latitute- and radius-dependent induction heating, and compare the heating efficiency to tidal heating.</p><p><br>Our results show that induction heating may have been significant in the past, leading to local temperature increases of several hundreds of Kelvin (see Fig. 1). This early heating leads to an earlier depletion of the interior and volatile outgassing compared to if the planet would not have been subject to induction heating. We show that induction heating has an impact comparable to tidal heating when assuming latest estimates on its eccentricity. We furthermore find that the planet mass (linked to the planetary orbital inclination) has a first-order influence on the efficiency of outgassing from the interior.</p><p> </p><p><img src="https://contentmanager.copernicus.org/fileStorageProxy.php?f=gnp.53bcd48f2cff56572630161/sdaolpUECMynit/12UGE&app=m&a=0&c=314fe555893c77417d52bf9a6bd3825f&ct=x&pn=gnp.elif&d=1" alt="" width="307" height="339"> </p><p>Fig 1: Local induction heating and resulting temperature variations compared to a simulation without induction heating after 1 Gyr of thermal evolution for an example rocky planet of 1.8 Earth masses with an iron content of 20 wt-%.</p>


2002 ◽  
Vol 187 ◽  
pp. 167-172
Author(s):  
T.R. Vaccaro ◽  
R.E. Wilson

AbstractThe red dwarf + white dwarf eclipsing binary V471 Tau shows a variable Hα feature that varies from absorption during eclipse to maximum emission during white dwarf transit. In 1998 we obtained simultaneous BVRI photometry and Hα spectroscopy, with thorough phase coverage of the 12.5 hour orbital period. A binary star model was used with our light curve, radial velocity, and Hα data to refine stellar and orbital parameters. Combined absorption-emission profiles were generated by the model and fit to the observations, yielding a red star radius of 0.94R⊙. Orbital inclination 78° is required with this size and other known parameters. The model includes three spots 1,000 K cooler than the surrounding photosphere. The variable Hα profile was modeled as a chromospheric fluorescing region (essentially on the surface of the red star) centered at the substellar point. Additional emission seen outside our modeled profiles may be large co-rotating prominences that complicate the picture.


1993 ◽  
Vol 139 ◽  
pp. 277-277
Author(s):  
J. Robert Buchler ◽  
Pawel Moskalik

AbstractWe have studied the nonlinear behavior of several sequences of BL Herculis-type models. The question arose whether the 2:1 resonance between the fundamental mode and the second overtone would cause the same systematic variation of Fourier parameters of the pulsation cycle with period ratio P2/P0 as was seen in the classical Cepheids. We find that for the BL Her stars, the behaviour of the light-curve Fourier phases is markedly different from the Cepheid case. In particular, ϕ21 exhibits essentially a featureless, monotone increase throughout the range of P2/P0, which is in qualitative agreement with the observed trend (Petersen & Diethelm 1986). In the velocity curves, on the other hand, the 2:1 resonance is a dominant feature and the progression of the Fourier phases and the amplitude ratios is similar to those witnessed in the Cepheids. However, here the sensitivity to the stellar masses and luminosities is significantly stronger. Our results show that radial velocity observations of the BL Her stars would pinpoint the resonance and put important new constraints on the models.


2017 ◽  
Vol 600 ◽  
pp. A13 ◽  
Author(s):  
N. Astudillo-Defru ◽  
X. Delfosse ◽  
X. Bonfils ◽  
T. Forveille ◽  
C. Lovis ◽  
...  

Context. Atmospheric magnetic fields in stars with convective envelopes heat stellar chromospheres, and thus increase the observed flux in the Ca ii H and K doublet. Starting with the historical Mount Wilson monitoring program, these two spectral lines have been widely used to trace stellar magnetic activity, and as a proxy for rotation period (Prot) and consequently for stellar age. Monitoring stellar activity has also become essential in filtering out false-positives due to magnetic activity in extra-solar planet surveys. The Ca ii emission is traditionally quantified through the R'HK-index, which compares the chromospheric flux in the doublet to the overall bolometric flux of the star. Much work has been done to characterize this index for FGK-dwarfs, but M dwarfs – the most numerous stars of the Galaxy – were left out of these analyses and no calibration of their Ca ii H and K emission to an R'HK exists to date. Aims. We set out to characterize the magnetic activity of the low- and very-low-mass stars by providing a calibration of the R'HK-index that extends to the realm of M dwarfs, and by evaluating the relationship between R'HK and the rotation period. Methods. We calibrated the bolometric and photospheric factors for M dwarfs to properly transform the S-index (which compares the flux in the Ca ii H and K lines to a close spectral continuum) into the R'HK. We monitored magnetic activity through the Ca ii H and K emission lines in the HARPS M dwarf sample. Results. The R'HK index, like the fractional X-ray luminosity LX/Lbol, shows a saturated correlation with rotation, with saturation setting in around a ten days rotation period. Above that period, slower rotators show weaker Ca ii activity, as expected. Under that period, the R'HK index saturates to approximately 10-4. Stellar mass modulates the Ca ii activity, with R'HK showing a constant basal activity above 0.6 M⊙ and then decreasing with mass between 0.6 M⊙ and the fully-convective limit of 0.35 M⊙. Short-term variability of the activity correlates with its mean level and stars with higher R'HK indexes show larger R'HK variability, as previously observed for earlier spectral types.


Sign in / Sign up

Export Citation Format

Share Document