scholarly journals Calibration of bias and scatter involved in cluster mass measurements using optical weak gravitational lensing

Author(s):  
Sebastian Grandis ◽  
Sebastian Bocquet ◽  
Joseph J Mohr ◽  
Matthias Klein ◽  
Klaus Dolag

Abstract Cosmological inference from cluster number counts is systematically limited by the accuracy of the mass calibration, i.e. the empirical determination of the mapping between cluster selection observables and halo mass. In this work we demonstrate a method to quantitatively determine the bias and uncertainties in weak-lensing mass calibration. To this end, we extract a library of projected matter density profiles from hydrodynamical simulations. Accounting for shear bias and noise, photometric redshift uncertainties, mis-centering, cluster member contamination, cluster morphological diversity, and line-of-sight projections, we produce a library of shear profiles. Fitting a one-parameter model to these profiles, we extract the so-called weak lensing mass MWL. Relating the weak-lensing mass to the halo mass from gravity-only simulations with the same initial conditions as the hydrodynamical simulations allows us to estimate the impact of hydrodynamical effects on cluster number counts experiments. Creating new shear libraries for ∼1000 different realizations of the systematics, provides a distribution of the parameters of the weak-lensing to halo mass relation, reflecting their systematic uncertainty. This result can be used as a prior for cosmological inference. We also discuss the impact of the inner fitting radius on the accuracy, and determine the outer fitting radius necessary to exclude the signal from neighboring structures. Our method is currently being applied to different Stage III lensing surveys, and can easily be extended to Stage IV lensing surveys.

2020 ◽  
Vol 28 (1) ◽  
Author(s):  
Keiichi Umetsu

AbstractWeak gravitational lensing of background galaxies provides a direct probe of the projected matter distribution in and around galaxy clusters. Here, we present a self-contained pedagogical review of cluster–galaxy weak lensing, covering a range of topics relevant to its cosmological and astrophysical applications. We begin by reviewing the theoretical foundations of gravitational lensing from first principles, with a special attention to the basics and advanced techniques of weak gravitational lensing. We summarize and discuss key findings from recent cluster–galaxy weak-lensing studies on both observational and theoretical grounds, with a focus on cluster mass profiles, the concentration–mass relation, the splashback radius, and implications from extensive mass-calibration efforts for cluster cosmology.


2020 ◽  
Vol 501 (2) ◽  
pp. 2044-2070
Author(s):  
M A Troxel ◽  
H Long ◽  
C M Hirata ◽  
A Choi ◽  
M Jarvis ◽  
...  

ABSTRACT The Nancy Grace Roman Space Telescope (Roman) mission is expected to launch in the mid-2020s. Its weak lensing program is designed to enable unprecedented systematics control in photometric measurements, including shear recovery, point spread function (PSF) correction, and photometric calibration. This will enable exquisite weak lensing science and allow us to adjust to and reliably contribute to the cosmological landscape after the initial years of observations from other concurrent Stage IV dark energy experiments. This potential requires equally careful planning and requirements validation as the mission prepares to enter its construction phase. We present a suite of image simulations based on galsim that are used to construct a complex, synthetic Roman weak lensing survey that incorporates realistic input galaxies and stars, relevant detector non-idealities, and the current reference 5-yr Roman survey strategy. We present a first study to empirically validate the existing Roman weak lensing requirements flowdown using a suite of 12 matched image simulations, each representing a different perturbation to the wavefront or image motion model. These are chosen to induce a range of potential static and low- and high-frequency time-dependent PSF model errors. We analyse the measured shapes of galaxies from each of these simulations and compare them to a reference, fiducial simulation to infer the response of the shape measurement to each of these modes in the wavefront model. We then compare this to existing analytic flowdown requirements, and find general agreement between the empirically derived response and that predicted by the analytic model.


Author(s):  
S Grandis ◽  
J J Mohr ◽  
J P Dietrich ◽  
S Bocquet ◽  
A Saro ◽  
...  

Abstract We forecast the impact of weak lensing (WL) cluster mass calibration on the cosmological constraints from the X-ray selected galaxy cluster counts in the upcoming eROSITA survey. We employ a prototype cosmology pipeline to analyze mock cluster catalogs. Each cluster is sampled from the mass function in a fiducial cosmology and given an eROSITA count rate and redshift, where count rates are modeled using the eROSITA effective area, a typical exposure time, Poisson noise and the scatter and form of the observed X-ray luminosity– and temperature–mass–redshift relations. A subset of clusters have mock shear profiles to mimic either those from DES and HSC or from the future Euclid and LSST surveys. Using a count rate selection, we generate a baseline cluster cosmology catalog that contains 13k clusters over 14,892 deg2 of extragalactic sky. Low mass groups are excluded using raised count rate thresholds at low redshift. Forecast parameter uncertainties for ΩM, σ8 and w are 0.023 (0.016; 0.014), 0.017 (0.012; 0.010), and 0.085 (0.074; 0.071), respectively, when adopting DES+HSC WL (Euclid; LSST), while marginalizing over the sum of the neutrino masses. A degeneracy between the distance–redshift relation and the parameters of the observable–mass scaling relation limits the impact of the WL calibration on the w constraints, but with BAO measurements from DESI an improved determination of w to 0.043 becomes possible. With Planck CMB priors, ΩM (σ8) can be determined to 0.005 (0.007), and the summed neutrino mass limited to ∑mν < 0.241 eV (at 95%). If systematics on the group mass scale can be controlled, the eROSITA group and cluster sample with 43k objects and LSST WL could constrain ΩM and σ8 to 0.007 and w to 0.050.


2019 ◽  
Vol 490 (2) ◽  
pp. 2606-2626 ◽  
Author(s):  
Hao-Yi Wu ◽  
David H Weinberg ◽  
Andrés N Salcedo ◽  
Benjamin D Wibking ◽  
Ying Zu

ABSTRACT Next-generation optical imaging surveys will revolutionize the observations of weak gravitational lensing by galaxy clusters and provide stringent constraints on growth of structure and cosmic acceleration. In these experiments, accurate modelling of covariance matrices of cluster weak lensing plays the key role in obtaining robust measurements of the mean mass of clusters and cosmological parameters. We use a combination of analytical calculations and high-resolution N-body simulations to derive accurate covariance matrices that span from the virial regime to linear scales of the cluster-matter cross-correlation. We validate this calculation using a public ray-tracing lensing simulation and provide a software package for calculating covariance matrices for a wide range of cluster and source sample choices. We discuss the relative importance of shape noise and density fluctuations, the impact of radial bin size, and the impact of off-diagonal elements. For a weak lensing source density ns = 10 arcmin−2, shape noise typically dominates the variance on comoving scales $r_{\rm p}\lesssim 5\ h^{-1} \, \rm Mpc$. However, for ns = 60 arcmin−2, potentially achievable with future weak lensing experiments, density fluctuations typically dominate the variance at $r_{\rm p}\gtrsim 1\ h^{-1} \, \rm Mpc$ and remain comparable to shape noise on smaller scales.


2020 ◽  
Vol 493 (2) ◽  
pp. 1640-1661 ◽  
Author(s):  
David Copeland ◽  
Andy Taylor ◽  
Alex Hall

ABSTRACT The capacity of Stage IV lensing surveys to measure the neutrino mass sum and differentiate between the normal and inverted mass hierarchies depends on the impact of nuisance parameters describing small-scale baryonic astrophysics and intrinsic alignments. For a Euclid-like survey, we perform the first combined weak lensing and galaxy clustering Fisher analysis with baryons, intrinsic alignments, and massive neutrinos for both hierarchies. We use a matter power spectrum generated from a halo model that captures the impact of baryonic feedback and adiabatic contraction. For weak lensing, we find that baryons cause severe degradation to forecasts of the neutrino mass sum, Σ, approximately doubling σΣ. We show that including galaxy clustering constraints from Euclid and BOSS, and cosmic microwave background (CMB) Planck priors, can reduce this degradation to σΣ to 9 per cent and 16 per cent for the normal and inverted hierarchies, respectively. The combined forecasts, $\sigma _{\Sigma _{\rm {NH}}}=0.034\, \rm {eV}$ and $\sigma _{\Sigma _{\rm {IH}}}=0.034\, \rm {eV}$, preclude a meaningful distinction of the hierarchies but could be improved upon with future CMB priors on ns and information from neutrinoless double beta decay to achieve a 2σ distinction. The effect of intrinsic alignments on forecasts is shown to be minimal, with σΣ even experiencing mild improvements due to information from the intrinsic alignment signal. We find that while adiabatic contraction and intrinsic alignments will require careful calibration to prevent significant biasing of Σ, there is less risk presented by feedback from energetic events like AGN and supernovae.


Author(s):  
S Grandis ◽  
J J Mohr ◽  
M Costanzi ◽  
A Saro ◽  
S Bocquet ◽  
...  

Abstract We perform a cross validation of the cluster catalog selected by the red-sequence Matched-filter Probabilistic Percolation algorithm (redMaPPer) in Dark Energy Survey year 1 (DES-Y1) data by matching it with the Sunyaev-Zel’dovich effect (SZE) selected cluster catalog from the South Pole Telescope SPT-SZ survey. Of the 1005 redMaPPer selected clusters with measured richness $\hat{\lambda }&gt;40$ in the joint footprint, 207 are confirmed by SPT-SZ. Using the mass information from the SZE signal, we calibrate the richness–mass relation using a Bayesian cluster population model. We find a mass trend λ∝MB consistent with a linear relation (B ∼ 1), no significant redshift evolution and an intrinsic scatter in richness of σλ = 0.22 ± 0.06. By considering two error models, we explore the impact of projection effects on the richness–mass modelling, confirming that such effects are not detectable at the current level of systematic uncertainties. At low richness SPT-SZ confirms fewer redMaPPer clusters than expected. We interpret this richness dependent deficit in confirmed systems as due to the increased presence at low richness of low mass objects not correctly accounted for by our richness-mass scatter model, which we call contaminants. At a richness $\hat{\lambda }=40$, this population makes up $&gt;12\%$ (97.5 percentile) of the total population. Extrapolating this to a measured richness $\hat{\lambda }=20$ yields $&gt;22\%$ (97.5 percentile). With these contamination fractions, the predicted redMaPPer number counts in different plausible cosmologies are compatible with the measured abundance. The presence of such a population is also a plausible explanation for the different mass trends (B ∼ 0.75) obtained from mass calibration using purely optically selected clusters. The mean mass from stacked weak lensing (WL) measurements suggests that these low mass contaminants are galaxy groups with masses ∼3- 5 × 1013 M⊙ which are beyond the sensitivity of current SZE and X-ray surveys but a natural target for SPT-3G and eROSITA.


2021 ◽  
Vol 507 (4) ◽  
pp. 4852-4863
Author(s):  
Íñigo Zubeldia ◽  
Aditya Rotti ◽  
Jens Chluba ◽  
Richard Battye

Abstract Matched filters are routinely used in cosmology in order to detect galaxy clusters from mm observations through their thermal Sunyaev–Zeldovich (tSZ) signature. In addition, they naturally provide an observable, the detection signal-to-noise or significance, which can be used as a mass proxy in number counts analyses of tSZ-selected cluster samples. In this work, we show that this observable is, in general, non-Gaussian, and that it suffers from a positive bias, which we refer to as optimization bias. Both aspects arise from the fact that the signal-to-noise is constructed through an optimization operation on noisy data, and hold even if the cluster signal is modelled perfectly well, no foregrounds are present, and the noise is Gaussian. After reviewing the general mathematical formalism underlying matched filters, we study the statistics of the signal-to-noise with a set Monte Carlo mock observations, finding it to be well-described by a unit-variance Gaussian for signal-to-noise values of 6 and above, and quantify the magnitude of the optimization bias, for which we give an approximate expression that may be used in practice. We also consider the impact of the bias on the cluster number counts of Planck and the Simons Observatory (SO), finding it to be negligible for the former and potentially significant for the latter.


2020 ◽  
Vol 495 (3) ◽  
pp. 2531-2542 ◽  
Author(s):  
William R Coulton ◽  
Jia Liu ◽  
Ian G McCarthy ◽  
Ken Osato

ABSTRACT We present a novel statistic to extract cosmological information in weak lensing data: the lensing minima. We also investigate the effect of baryons on cosmological constraints from peak and minimum counts. Using the MassiveNuS simulations, we find that lensing minima are sensitive to non-Gaussian cosmological information and are complementary to the lensing power spectrum and peak counts. For an LSST-like survey, we obtain $95{{\ \rm per\ cent}}$ credible intervals from a combination of lensing minima and peaks that are significantly stronger than from the power spectrum alone, by $44{{\ \rm per\ cent}}$, $11{{\ \rm per\ cent}}$, and $63{{\ \rm per\ cent}}$ for the neutrino mass sum ∑mν, matter density Ωm, and amplitude of fluctuation As, respectively. We explore the effect of baryonic processes on lensing minima and peaks using the hydrodynamical simulations BAHAMAS and Osato15. We find that ignoring baryonic effects would lead to strong (≈4σ) biases in inferences from peak counts, but negligible (≈0.5σ) for minimum counts, suggesting lensing minima are a potentially more robust tool against baryonic effects. Finally, we demonstrate that the biases can in principle be mitigated without significantly degrading cosmological constraints when we model and marginalize the baryonic effects.


2019 ◽  
Vol 626 ◽  
pp. A72 ◽  
Author(s):  
C. Gouin ◽  
R. Gavazzi ◽  
C. Pichon ◽  
Y. Dubois ◽  
C. Laigle ◽  
...  

Context. Accurate model predictions including the physics of baryons are required to make the most of the upcoming large cosmological surveys devoted to gravitational lensing. The advent of hydrodynamical cosmological simulations enables such predictions on sufficiently sizeable volumes. Aims. Lensing quantities (deflection, shear, convergence) and their statistics (convergence power spectrum, shear correlation functions, galaxy-galaxy lensing) are computed in the past lightcone built in the Horizon-AGN hydrodynamical cosmological simulation, which implements our best knowledge on baryonic physics at the galaxy scale in order to mimic galaxy populations over cosmic time. Methods. Lensing quantities are generated over a one square degree field of view by performing multiple-lens plane ray-tracing through the lightcone, taking full advantage of the 1 kpc resolution and splitting the line of sight over 500 planes all the way to redshift z ∼ 7. Two methods are explored (standard projection of particles with adaptive smoothing, and integration of the acceleration field) to ensure a good implementation. The focus is on small scales where baryons matter most. Results. Standard cosmic shear statistics are affected at the 10% level by the baryonic component for angular scales below a few arcminutes. The galaxy-galaxy lensing signal, or galaxy-shear correlation function, is consistent with measurements for the redshift z ∼ 0.5 massive galaxy population. At higher redshift z ≳ 1, the effect of magnification bias on this correlation is relevant for separations greater than 1 Mpc. Conclusions. This work is pivotal for all current and upcoming weak-lensing surveys and represents a first step towards building a full end-to-end generation of lensed mock images from large cosmological hydrodynamical simulations.


Sign in / Sign up

Export Citation Format

Share Document