scholarly journals Birth of the ELMs: a ZTF survey for evolved cataclysmic variables turning into extremely low-mass white dwarfs

Author(s):  
Kareem El-Badry ◽  
Hans-Walter Rix ◽  
Eliot Quataert ◽  
Thomas Kupfer ◽  
Ken J Shen

Abstract We present a systematic survey for mass-transferring and recently-detached cataclysmic variables (CVs) with evolved secondaries, which are progenitors of extremely low mass white dwarfs (ELM WDs), AM CVn systems, and detached ultracompact binaries. We select targets below the main sequence in the Gaia colour-magnitude diagram with ZTF light curves showing large-amplitude ellipsoidal variability and orbital period Porb < 6 hr. This yields 51 candidates brighter than G = 18, of which we have obtained many-epoch spectra for 21. We confirm all 21 to be completely– or nearly–Roche lobe filling close binaries. 13 show evidence of ongoing mass transfer, which has likely just ceased in the other 8. Most of the secondaries are hotter than any previously known CV donors, with temperatures 4700 < Teff/K < 8000. Remarkably, all secondaries with $T_{\rm eff} \gtrsim 7000\, \rm K$ appear to be detached, while all cooler secondaries are still mass-transferring. This transition likely marks the temperature where magnetic braking becomes inefficient due to loss of the donor’s convective envelope. Most of the proto-WD secondaries have masses near 0.15 M⊙; their companions have masses near 0.8 M⊙. We infer a space density of $\sim 60\, \rm kpc^{-3}$, roughly 80 times lower than that of normal CVs and three times lower than that of ELM WDs. The implied Galactic birth rate, $\mathcal {R}\sim 60\, \rm Myr^{-1}$, is half that of AM CVn binaries. Most systems are well-described by MESA models for CVs in which mass transfer begins only as the donor leaves the main sequence. All are predicted to reach minimum periods 5 ≲ Porb/min ≲ 30 within a Hubble time, where they will become AM CVn binaries or merge. This sample triples the known evolved CV population and offers broad opportunities for improving understanding of the compact binary population.

2004 ◽  
Vol 194 ◽  
pp. 75-76
Author(s):  
N. A. Webb ◽  
B. Gendre ◽  
D. Barret

AbstractGlobular clusters (GCs) harbour a large number of close binaries which are hard to identify optically due to high stellar densities. Observing these GCs in X-rays, in which the compact binaries are bright, diminishes the over-crowding problem. Using the new generation of X-ray observatories, it is possible to identify populations of neutron star low mass X-ray binaries, cataclysmic variables and millisecond pulsars as well as other types of binaries. We present the spectra of a variety of binaries that we have identified in four GCs observed by XMM-Newton. We show that through population studies we can begin to understand the formation of individual classes of binaries in GCs and hence start to unfold the complex evolutionary paths of these systems.


2018 ◽  
Vol 617 ◽  
pp. A6 ◽  
Author(s):  
K. J. Bell ◽  
I. Pelisoli ◽  
S. O. Kepler ◽  
W. R. Brown ◽  
D. E. Winget ◽  
...  

Context. The nature of the recently identified “sdA” spectroscopic class of stars is not well understood. The thousands of known sdAs have H-dominated spectra, spectroscopic surface gravity values between main sequence stars and isolated white dwarfs, and effective temperatures below the lower limit for He-burning subdwarfs. Most are likely products of binary stellar evolution, whether extremely low-mass white dwarfs and their precursors or blue stragglers in the halo. Aims. Stellar eigenfrequencies revealed through time series photometry of pulsating stars sensitively probe stellar structural properties. The properties of pulsations exhibited by sdA stars would contribute substantially to our developing understanding of this class. Methods. We extend our photometric campaign to discover pulsating extremely low-mass white dwarfs from the McDonald Observatory to target sdA stars classified from SDSS spectra. We also obtain follow-up time series spectroscopy to search for binary signatures from four new pulsators. Results. Out of 23 sdA stars observed, we clearly detect stellar pulsations in 7. Dominant pulsation periods range from 4.6 min to 12.3 h, with most on timescales of approximately one hour. We argue specific classifications for some of the new variables, identifying both compact and likely main sequence dwarf pulsators, along with a candidate low-mass RR Lyrae star. Conclusions. With dominant pulsation periods spanning orders of magnitude, the pulsational evidence supports the emerging narrative that the sdA class consists of multiple stellar populations. Since multiple types of sdA exhibit stellar pulsations, follow-up asteroseismic analysis can be used to probe the precise evolutionary natures and stellar structures of these individual subpopulations.


1992 ◽  
Vol 9 ◽  
pp. 643-645
Author(s):  
G. Fontaine ◽  
F. Wesemael

AbstractIt is generally believed that the immediate progenitors of most white dwarfs are nuclei of planetary nebulae, themselves the products of intermediate- and low-mass main sequence evolution. Stars that begin their lifes with masses less than about 7-8 M⊙ (i.e., the vast majority of them) are expected to become white dwarfs. Among those which have already had the time to become white dwarfs since the formation of the Galaxy, a majority have burnt hydrogen and helium in their interiors. Consequently, most of the mass of a typical white dwarf is contained in a core made of the products of helium burning, mostly carbon and oxygen. The exact proportions of C and 0 are unknown because of uncertainties in the nuclear rates of helium burning.


1980 ◽  
Vol 88 ◽  
pp. 271-286 ◽  
Author(s):  
Margherita Hack ◽  
Umberto Flora ◽  
Paolo Santin

The common peculiarities of these two systems are: a) the companion is a massive object (probably m2≥10) whose spectrum is not observable; b) both systems show evidence, though in different degrees, of mass-transfer and mass-loss; c) both present, in different degrees, hydrogen deficiency; d) ultraviolet observations have shown, in both cases, the presence of lines of highly ionized elements like N V, C IV, Si IV, probably formed in an extended envelope because they do not show orbital radial velocity shifts, and cannot be explained by the effective temperature of the star whose spectrum we observe. The latter property seems to be common to several close binaries, as shown by the ultraviolet observations with IUE by Plavec and Koch (1979); e) both systems present infrared excess, suggesting the presence of an extended envelope (Gehrz et al. 1974; Lee and Nariai, 1967; Humphreys and Ney, 1974; Treffers et al. 1976).


1997 ◽  
Vol 180 ◽  
pp. 85-90
Author(s):  
L.R. Yungelson ◽  
A.V. Tutukov

We analyse the population of PNe and links between binary PNNi and stars which are in the later evolutionary stages. In a model which assumes that all stars are born in binaries, about 16% of PN result from ejection of common envelopes in close binaries, 85% of single PNNi are formed by merger of components of binaries. In the model, 5% of PNNi may be precataclysmic binaries, 5% may be precursors of symbiotic stars, 0.4% may be pre-SN Ia, 0.1% - precursors of hydrogen-deficient giants. About 0.1% of all PNe may be hydrogen-deficient.


1979 ◽  
Vol 53 ◽  
pp. 504-504
Author(s):  
B. Paczynski ◽  
W. Krzeminski

The shortest known orbital period of a cataclysmic binary with a hydrogen dwarf secondary filling its Roche lobe is about 80 minutes. Theoretically the shortest possible orbital period for such a system is less than 60 minutes. We tried to explain why the periods shorter than 80 minutes are not observed. We estimated the time scale of angular momentum loss of a cataclysmic binary and the resulting mass transfer rate. The minimum orbital period for a given Ṁ is obtained during the transition of the secondary from the Main Sequence onto the Degenerate Dwarf Sequence. Pmin ∝ Ṁ½ Therefore, only those systems can reach low P for which Ṁ is small. This explains why among the shortest period cataclysmic variables there are no novae: presumably their mass transfer rates are too large. It also indicates that “polars” (AM Her-type stars) and SU UMa-type stars should have low Ṁ.


2010 ◽  
Author(s):  
T. E. Woods ◽  
N. Ivanova ◽  
M. van der Sluys ◽  
S. Chaichenets ◽  
Vicky Kologera ◽  
...  

2016 ◽  
Vol 12 (S328) ◽  
pp. 54-60
Author(s):  
Colin A. Hill

AbstractInteracting binaries provide unique parameter regimes, both rapid rotation and tidal distortion, in which to test stellar dynamo theories and study the resulting magnetic activity. Close binaries such as cataclysmic variables (CVs) have been found to differentially rotate, and so can provide testbeds for tidal dissipation efficiency in stellar convective envelopes, with implications for both CV and planet-star evolution. Furthermore, CVs show evidence of preferential emergence of magnetic flux tubes towards the companion star, as well as large, long-lived prominences that form preferentially within the binary geometry. Moreover, RS CVn binaries also show clear magnetic interactions between the two components in the form of coronal X-ray emission. Here, we review several examples of magnetic interactions in different types of close binaries.


2015 ◽  
Vol 2 (1) ◽  
pp. 188-191 ◽  
Author(s):  
L. Schmidtobreick ◽  
C. Tappert

The population of cataclysmic variables with orbital periods right above the period gap are dominated by systems with extremely high mass transfer rates, the so-called SW Sextantis stars. On the other hand, some old novae in this period range which are expected to show high mass transfer rate instead show photometric and/or spectroscopic resemblance to low mass transfer systems like dwarf novae. We discuss them as candidates for so-called hibernating systems, CVs that changed their mass transfer behaviour due to a previously experienced nova outburst. This paper is designed to provide input for further research and discussion as the results as such are still very preliminary.


Sign in / Sign up

Export Citation Format

Share Document