scholarly journals The antesonic condition for the explosion of core-collapse supernovae – II. Rotation and turbulence

2021 ◽  
Vol 502 (3) ◽  
pp. 4125-4136
Author(s):  
Matthias J Raives ◽  
Todd A Thompson ◽  
Sean M Couch

ABSTRACT In the problem of steady free fall on to a standing shockwave around a central mass, the ‘antesonic’ condition limits the regime of stable accretion to $c_T^2/v_\mathrm{esc}^2\le 3/16$, where cT is the isothermal sound speed in the subsonic post-shock flow, and vesc is the escape velocity at the shock radius. Above this limit, it is impossible to satisfy both the Euler equation and the shock jump conditions, and the system transitions to a wind. This physics explains the existence of a critical neutrino luminosity in steady-state models of accretion in the context of core-collapse supernovae. Here, we extend the antesonic condition to flows with rotation and turbulence using a simple one-dimensional formalism. Both effects decrease the critical post-shock sound speed required for explosion. While quite rapid rotation is required for a significant change to the critical condition, we show that the level of turbulence typically achieved in supernova simulations can greatly impact the critical value of $c_T^2/v_\mathrm{esc}^2$. A core angular velocity corresponding to a millisecond rotation period after contraction of the proto-neutron star results in only a ∼5 per cent reduction of the critical curve. In contrast, near-sonic turbulence with specific turbulent kinetic energy $K/c_T^2=0.5-1$, leads to a decrease in the critical value of $c_T^2/v_{\rm esc}^2$ by ∼20 to 40 per cent. This analysis provides a framework for understanding the role of post-shock turbulence in instigating explosions in models that would otherwise fail and helps explain why multidimensional simulations explode more easily than their one-dimensional counterparts.

Author(s):  
RICARDO SIMÃO ◽  
FRANCISCO ROSENDO ◽  
LUCAS WARDIL

The role of luck on individual success is hard to be investigated empirically. Simplified mathematical models are often used to shed light on the subtle relations between success and luck. Recently, a simple model called “Talent versus Luck” showed that the most successful individual in a population can be just an average talented individual that is subjected to a very fortunate sequence of events. Here, we modify the framework of the TvL model such that in our model the individuals’ success is modelled as an ensemble of one-dimensional random walks. Our model reproduces the original TvL results and, due to the mathematical simplicity, it shows clearly that the original conclusions of the TvL model are the consequence of two factors: first, the normal distribution of talents with low standard deviation, which creates a large number of average talented individuals; second, the low number of steps considered, which allows the observation of large fluctuations. We also show that the results strongly depend on the relative frequency of good and bad luck events, which defines a critical value for the talent: in the long run, the individuals with high talent end up very successful and those with low talent end up ruined. Last, we considered two variations to illustrate applications of the ensemble of random walks model.


2011 ◽  
Vol 35 (1) ◽  
pp. 15-27
Author(s):  
Zoran Ivić ◽  
Željko Pržulj

Adiabatic large polarons in anisotropic molecular crystals We study the large polaron whose motion is confined to a single chain in a system composed of the collection of parallel molecular chains embedded in threedimensional lattice. It is found that the interchain coupling has a significant impact on the large polaron characteristics. In particular, its radius is quite larger while its effective mass is considerably lighter than that estimated within the one-dimensional models. We believe that our findings should be taken into account for the proper understanding of the possible role of large polarons in the charge and energy transfer in quasi-one-dimensional substances.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Dipankar Barman ◽  
Subhajit Barman ◽  
Bibhas Ranjan Majhi

Abstract We investigate the effects of field temperature T(f) on the entanglement harvesting between two uniformly accelerated detectors. For their parallel motion, the thermal nature of fields does not produce any entanglement, and therefore, the outcome is the same as the non-thermal situation. On the contrary, T(f) affects entanglement harvesting when the detectors are in anti-parallel motion, i.e., when detectors A and B are in the right and left Rindler wedges, respectively. While for T(f) = 0 entanglement harvesting is possible for all values of A’s acceleration aA, in the presence of temperature, it is possible only within a narrow range of aA. In (1 + 1) dimensions, the range starts from specific values and extends to infinity, and as we increase T(f), the minimum required value of aA for entanglement harvesting increases. Moreover, above a critical value aA = ac harvesting increases as we increase T(f), which is just opposite to the accelerations below it. There are several critical values in (1 + 3) dimensions when they are in different accelerations. Contrary to the single range in (1 + 1) dimensions, here harvesting is possible within several discrete ranges of aA. Interestingly, for equal accelerations, one has a single critical point, with nature quite similar to (1 + 1) dimensional results. We also discuss the dependence of mutual information among these detectors on aA and T(f).


2007 ◽  
Vol 142 (3-4) ◽  
pp. 477-480
Author(s):  
Noriaki Matsunaga ◽  
Katutosi Hino ◽  
Takamichi Ohta ◽  
Katsumi Yamashita ◽  
Kazushige Nomura ◽  
...  

2011 ◽  
Vol 115 (14) ◽  
pp. 7104-7113 ◽  
Author(s):  
Jiazang Chen ◽  
Bo Li ◽  
Jianfeng Zheng ◽  
Suping Jia ◽  
Jianghong Zhao ◽  
...  

1996 ◽  
Vol 169 ◽  
pp. 349-350 ◽  
Author(s):  
P. Vauterin ◽  
H. Dejonghe

We explore a series expansion method to calculate the instabilities and the structure of the perturbations for a variety of uniformly rotating finite stellar disks. This survey focuses on the role of the distribution function in stability analyses. Although the potential does not show differential rotation, it will in many cases be a reasonable approximation for the disk in the central regions of galaxies without massive central mass concentration.


Sign in / Sign up

Export Citation Format

Share Document