scholarly journals The distribution of [α/Fe] in the Milky Way disc

Author(s):  
Fiorenzo Vincenzo ◽  
David H Weinberg ◽  
Andrea Miglio ◽  
Richard R Lane ◽  
Alexandre Roman-Lopes

Abstract Using a sample of red giant stars from the Apache Point Observatory Galactic Evolution Experiment (APOGEE) Data Release 16, we infer the conditional distribution p([α/Fe] | [Fe/H]) in the Milky Way disk for the α-elements Mg, O, Si, S, and Ca. In each bin of [Fe/H] and Galactocentric radius R, we model p([α/Fe]) as a sum of two Gaussians, representing ‘low-α’ and ‘high-α’ populations with scale heights z1 = 0.45 kpc and z2 = 0.95 kpc, respectively. By accounting for age-dependent and z-dependent selection effects in APOGEE, we infer the [α/Fe] distributions that would be found for a fair sample of long-lived stars covering all z. Near the Solar circle, this distribution is bimodal at sub-solar [Fe/H], with the low-α and high-α peaks clearly separated by a minimum at intermediate [α/Fe]. In agreement with previous results, we find that the high-α population is more prominent at smaller R, lower [Fe/H], and larger |z|, and that the sequence separation is smaller for Si and Ca than for Mg, O, and S. We find significant intrinsic scatter in [α/Fe] at fixed [Fe/H] for both the low-α and high-α populations, typically ∼0.04-dex. The means, dispersions, and relative amplitudes of this two-Gaussian description, and the dependence of these parameters on R, [Fe/H], and α-element, provide a quantitative target for chemical evolution models and a test for hydrodynamic simulations of disk galaxy formation. We argue that explaining the observed bimodality will probably require one or more sharp transitions in the disk’s gas accretion, star formation, or outflow history in addition to radial mixing of stellar populations.

Author(s):  
M. Ness

AbstractI review the data-driven approach to spectroscopy, The Cannon, which is a method for deriving fundamental diagnostics of galaxy formation of precise chemical compositions and stellar ages, across many stellar surveys that are mapping the Milky Way. With The Cannon, the abundances and stellar parameters from the multitude of stellar surveys can be placed directly on the same scale, using stars in common between the surveys. Furthermore, the information that resides in the data can be fully extracted, this has resulted in higher precision stellar parameters and abundances being delivered from spectroscopic data and has opened up new avenues in galactic archeology, for example, in the determination of ages for red giant stars across the Galactic disk. Coupled with Gaia distances, proper motions, and derived orbit families, the stellar age and individual abundance information delivered at the precision obtained with the data-driven approach provides very strong constraints on the evolution of and birthplace of stars in the Milky Way. I will review the role of data-driven spectroscopy as we enter the era where we have both the data and the tools to build the ultimate conglomerate of galactic information as well as highlight further applications of data-driven models in the coming decade.


2012 ◽  
Vol 10 (H16) ◽  
pp. 372-372
Author(s):  
Rok Roškar

AbstractIn recent years, effects such as the radial migration of stars in disks have been recognized as important drivers of the properties of stellar populations. Radial migration arises due to perturbative effects of disk structures such as bars and spiral arms, and can deposit stars formed in disks to regions far from their birthplaces. Migrant stars can significantly affect the demographics of their new locales, especially in low-density regions such as in the outer disks. However, in the cosmological environment, other effects such as mergers and filamentary gas accretion also influence the disk formation process. Understanding the relative importance of these processes on the detailed evolution of stellar population signatures is crucial for reconstructing the history of the Milky Way and other nearby galaxies. In the Milky Way disk in particular, the formation of the thickened component has recently attracted much attention due to its potential to serve as a diagnostic of the galaxy's early history. Some recent work suggests, however, that the vertical structure of Milky Way stellar populations is consistent with models that build up the thickened component through migration. I discuss these developments in the context of cosmological galaxy formation.


2020 ◽  
Vol 492 (3) ◽  
pp. 3631-3646 ◽  
Author(s):  
J Ted Mackereth ◽  
Jo Bovy

ABSTRACT The stellar mass in the halo of the Milky Way is notoriously difficult to determine, owing to the paucity of its stars in the solar neighbourhood. With tentative evidence from Gaia that the nearby stellar halo is dominated by a massive accretion event – referred to as Gaia-Enceladus or Sausage – these constraints are now increasingly urgent. We measure the mass in kinematically selected mono-abundance populations (MAPs) of the stellar halo between −3 < [Fe/H] < −1 and 0.0 < [Mg/Fe] < 0.4 using red giant star counts from APOGEE DR14. We find that MAPs are well fit by single power laws on triaxial ellipsoidal surfaces, and we show that that the power-law slope α changes such that high [Mg/Fe] populations have α ∼ 4, whereas low [Mg/Fe] MAPs are more extended with shallow slopes, α ∼ 2. We estimate the total stellar mass to be $M_{*,\mathrm{tot}} = 1.3^{+0.3}_{-0.2}\times 10^{9}\ \mathrm{M_{\odot}}$, of which we estimate ${\sim}0.9^{+0.2}_{-0.1} \times 10^{9}\ \mathrm{M_{\odot}}$ to be accreted. We estimate that the mass of accreted stars with e > 0.7 is M*,accreted, e > 0.7 = 3 ± 1 (stat.) ± 1 (syst.) × 108 M⊙, or ${\sim}30{-}50{{\ \rm per\ cent}}$ of the accreted halo mass. If the majority of these stars are the progeny of a massive accreted dwarf, this places an upper limit on its stellar mass, and implies a halo mass for the progenitor of ∼1010.2 ± 0.2 M⊙. This constraint not only shows that the Gaia-Enceladus/Sausage progenitor may not be as massive as originally suggested, but that the majority of the Milky Way stellar halo was accreted. These measurements are an important step towards fully reconstructing the assembly history of the Milky Way.


1991 ◽  
Vol 21 (1) ◽  
pp. 309-326

In the triennium under review, from the late second half of 1987 to the early second half of 1990, Commission 29 has sponsored or cosponsored the following IAU Conferences: Coll. No. 106, “Evolution of Peculiar Red Giant Stars,” Bloomington, Indiana, July 1988; CoU. No. 114, “White Dwarfs,” Hanover, New Hamsphire, August 1988; Coll. No. 113, “Physics of Luminous Blue Variables,” Val Morin, Quebec, August 1988; Coll. No. 122, “Physics of Classical Novae,” Madrid, Spain, June 1989; Symp. No. 143, “Wolf-Rayet Stars and Interrelations with Other Massive Stars in Galaxies,” Denpasar, Indonesia, June 1990; Symp. No 148, “The Magellanic Clouds and their Dynamical Interaction with the Milky Way,” Sydney, Australia, July 1990; Symp. No. 145, “Evolution of Stars: the Photospheric Abundance Connection,” Druzba, Bulgaria. August 1990.


2018 ◽  
Vol 14 (A30) ◽  
pp. 257-257
Author(s):  
Friedrich Anders ◽  
Ivan Minchev ◽  
Cristina Chiappini

AbstractThe time evolution of the radial metallicity gradient is one of the most important constraints for Milky Way chemical and chemo-dynamical models. In this talk we reviewed the status of the observational debate and presented a new measurement of the age dependence of the radial abundance gradients, using combined asteroseismic and spectroscopic observations of red giant stars. We compared our results to state-of-the-art chemo-dynamical Milky Way models and recent literature results obtained with open clusters and planetary nebulae, and propose a new method to infer the past history of the Galactic radial abundance profile.


2004 ◽  
Vol 217 ◽  
pp. 170-171
Author(s):  
Klaas S. de Boer

The amount of gas shed by red giant stars in the halo is assessed to find its contribution to the long known infall of high-b gas. The infall rate due to RG star mass loss equals 3 · 10−6 M⊙ kpc−1 y−1.


2009 ◽  
Vol 5 (S268) ◽  
pp. 183-184 ◽  
Author(s):  
A. F. Marino ◽  
G. Piotto ◽  
R. Gratton ◽  
A. P. Milone ◽  
M. Zoccali ◽  
...  

AbstractWe derive abundances of Fe, Na, O, α and s-elements from GIRAFFE@VLT spectra for more than 200 red giant stars in the Milky Way satellite ω Centauri. Our preliminary results are that: (i) we confirm that ω Centauri exhibits large star-to-star metallicity variation (~1.4 dex); (ii) the metallicity distribution reveals the presence of at least five stellar populations with different [Fe/H]; (iii) a distinct Na-O anticorrelation is clearly observed for the metal-poor and metal-intermediate stellar populations while apparently the anticorrelation disappears for the most metal rich populations. Interestingly the Na level grows with iron.


2020 ◽  
Vol 495 (1) ◽  
pp. 743-757 ◽  
Author(s):  
Sownak Bose ◽  
Alis J Deason ◽  
Vasily Belokurov ◽  
Carlos S Frenk

ABSTRACT Ultrafaint dwarf galaxies ($M_\star \le 10^{5}\, {\rm M}_\odot$) are relics of an early phase of galaxy formation. They contain some of the oldest and most metal-poor stars in the Universe which likely formed before the epoch of hydrogen reionization. These galaxies are so faint that they can only be detected as satellites of the Milky Way. They are so small that they are not resolved in current cosmological hydrodynamic simulations. Here, we combine very high-resolution cosmological N-body simulations with a semi-analytic model of galaxy formation to study the demographics and spatial distribution of ultrafaint satellites in Milky Way-mass haloes. We show that the abundance of these galaxies is correlated with the assembly history of the host halo: at fixed mass, haloes assembled earlier contain, on average, more ultrafaint satellites today than haloes assembled later. We identify simulated galactic haloes that experience an ancient Gaia-Enceladus-Sausage-like and a recent LMC-like accretion event and find that the former occurs in 33 per cent of the sample and the latter in 9 per cent. Only 3 per cent experience both events and these are especially rich in ultrafaint satellites, most acquired during the ancient accretion event. Our models predict that the radial distribution of satellites is more centrally concentrated in early-forming haloes. Accounting for the depletion of satellites by tidal interactions with the central disc, we find a very good match to the observed radial distribution of satellites in the Milky Way over the entire radial range. This agreement is mainly due to the ability of our model to track ‘orphan’ galaxies after their subhaloes fall below the resolution limit of the simulation.


2017 ◽  
Vol 13 (S334) ◽  
pp. 25-28
Author(s):  
Bruno Dias ◽  
Beatriz Barbuy ◽  
Ivo Saviane ◽  
Enrico V. Held ◽  
Gary Da Costa ◽  
...  

AbstractMilky Way globular clusters are excellent laboratories for stellar population detailed analysis that can be applied to extragalactic environments with the advent of the 40m-class telescopes like the ELT. The globular cluster population traces the early evolution of the Milky Way which is the field of Galactic archaeology. We present our GlObular clusTer Homogeneous Abundance Measurement (GOTHAM) survey. We derived radial velocities, Teff, log(g), [Fe/H], [Mg/Fe] for red giant stars in one third of all Galactic globular clusters that represent well the Milky Way globular cluster system in terms of metallicity, mass, reddening, and distance. Our method is based on low-resolution spectroscopy and is intrinsically reddening free and efficient even for faint stars. Our [Fe/H] determinations agree with high-resolution results to within 0.08 dex. The GOTHAM survey provides a new metallicity scale for Galactic globular clusters with a significant update of metallicities higher than [Fe/H] > -0.7. We show that the trend of [Mg/Fe] with metallicity is not constant as previously found, because now we have more metal-rich clusters. Moreover, peculiar clusters whose [Mg/Fe] does not match Galactic stars for a given metallicity are discussed. We also measured the CaII triplet index for all stars and we show that the different chemical evolution of Milky Way open clusters, field stars, and globular clusters implies different calibrations of calcium triplet to metallicity.


Sign in / Sign up

Export Citation Format

Share Document