scholarly journals Detectability of gravitational waves from a population of inspiralling black holes in Milky Way-mass galaxies

2021 ◽  
Vol 502 (3) ◽  
pp. 3932-3941
Author(s):  
Razieh Emami ◽  
Abraham Loeb

ABSTRACT We estimate the rate of inspiral for a population of stellar mass black holes in the star cluster around the supermassive black hole (SMBHs) at the centre of Milky Way mass galaxies. Our approach is based on an orbit averaged Fokker Planck approach. This is then followed by a post-processing approach, which incorporates the impact of the angular momentum diffusion and the GW dissipation in the evolution of system. We make a sample of 104 BHs with different initial semimajor and eccentricities with the distribution of fc(a)/a and e, respectively, where fc(a) refers to the phase–space distribution function for cth species. Angular momentum diffusion leads to an enhancement in the eccentricity of every system in the above sample and so increases the rate of inspiral. We compute the fraction of time that every system spends in the LISA band with the signal-to-noise ratio $\rm {S/N} \ge 8$. Every system eventually approaches the loss-cone with a replenishment rate given by the diffusion rate of the cluster, $\mu / \rm {Gyr}^{-1} \lesssim 1$. This small rate reduces the total rate of the inspiral for individual MW mass galaxies with an estimate Robs ≲ 10−6−10−5 yr−1. A large collection of galaxies (Ngal > 104 MW) may lead to an observable GW signal in the LISA band.

2021 ◽  
Vol 508 (1) ◽  
pp. 1533-1542
Author(s):  
Ludovica Varisco ◽  
Elisa Bortolas ◽  
Massimo Dotti ◽  
Alberto Sesana

ABSTRACT Massive black hole binaries (MBHBs) with masses of ∼104 to $\sim 10^{10} \, \mathrm{M}_{\odot {}}$ are one of the main targets for currently operating and forthcoming space-borne gravitational wave observatories. In this paper, we explore the effect of the stellar host rotation on the bound binary hardening efficiency, driven by three-body stellar interactions. As seen in previous studies, we find that the centre of mass (CoM) of a prograde MBHB embedded in a rotating environment starts moving on a nearly circular orbit about the centre of the system shortly after the MBHB binding. In our runs, the oscillation radius is ≈ 0.25 (≈ 0.1) times the binary influence radius for equal mass MBHBs (MBHBs with mass ratio 1:4). Conversely, retrograde binaries remain anchored about the centre of the host. The binary shrinking rate is twice as fast when the binary CoM exhibits a net orbital motion, owing to a more efficient loss cone repopulation even in our spherical stellar systems. We develop a model that captures the CoM oscillations of prograde binaries; we argue that the CoM angular momentum gain per time unit scales with the internal binary angular momentum, so that most of the displacement is induced by stellar interactions occurring around the time of MBHB binding, while the subsequent angular momentum enhancement gets eventually quashed by the effect of dynamical friction. The effect of the background rotation on the MBHB evolution may be relevant for LISA sources, that are expected to form in significantly rotating stellar systems.


2019 ◽  
Vol 629 ◽  
pp. A44 ◽  
Author(s):  
Mariya Lyubenova ◽  
Athanassia Tsatsi

Context. Nucleation is a common phenomenon in all types of galaxies and at least 70% of them host nuclear star clusters (NSCs) in their centres. Many of the NSCs co-habit with supermassive black holes and follow similar scaling relations with host galaxy properties. Unlike black holes, NSCs, preserve the signature of their evolutionary path imprinted onto their kinematics and stellar populations. Thus their study provides us with important information about the formation of galactic nuclei. Aims. In this paper we explored the angular momentum of the nuclei of six intermediate mass (9.7 >  log(Mdyn/M⊙) > 10.6) early-type galaxies that host NSCs and are located in the Fornax cluster. Our goal was to derive a link between the nuclear angular momentum and the proposed formation scenarios of NSCs. Methods. We used adaptive optics assisted IFU observations with VLT/SINFONI to derive the spatially resolved stellar kinematics of the galaxy nuclei. We measured their specific stellar angular momenta λRe, and compared these with Milky Way globular clusters (GCs) and N-body simulations of NSC formation. Results. We found that all studied nuclei exhibit varied stellar kinematics. Their λRe and ellipticities are similar to Milky Way GCs. Five out of six galaxy nuclei are consistent with the λRe − ϵe of simulated NSCs embedded in a contaminating nuclear bulge that have formed via the in-spiralling and merging of GCs. Conclusion. It has previously been suggested that the NSCs in higher mass galaxies, such as those studied in this paper, form via dissipational sinking of gas onto the galactic nuclei with hints that some might also involve the merger of GCs. In this work we show that we cannot exclude the pure GC merging scenario as a viable path for the formation of NSCs.


2018 ◽  
Vol 14 (S344) ◽  
pp. 105-108
Author(s):  
Matteo Mazzarini ◽  
Andreas Just

AbstractWe perform six N-body simulations reproducing the interaction between the Milky Way and its satellite galaxies, in order to address the deposit of satellite debris in the Galactic environment. We find that most of the baryons survive inside their host satellites and that most of the baryonic debris ends up in the inner regions of the Milky Way, in contrast to the more uniform distribution of dark matter debris. We also look at the debris Inertia tensor in the inner regions of the Milky Way and find a lower minor-to-major axis ratio for baryons than dark matter. We plan to explore the phase-space distribution of the debris ending in the Galactic disk and bulge. We also plan further simulations including gas dynamics to study the impact of gas on the process.


2007 ◽  
Vol 3 (S245) ◽  
pp. 255-256
Author(s):  
Evgeny V. Polyachenko ◽  
Valerij L. Polyachenko ◽  
Ilia G. Shukhman

AbstractStability of spherical and thin disk stellar clusters surrounding massive black holes are studied. Due to the black hole, stars with sufficiently low angular momenta escape from the system through the loss cone. We show that stability of spherical clusters crucially depend on whether the distribution of stars is monotonic or non-monotonic in angular momentum. It turns out that only non-monotonic distributions can be unstable. At the same time the instability in disk clusters is possible for both types of distributions.


Author(s):  
Kun Ting Eddie Chua ◽  
Karia Dibert ◽  
Mark Vogelsberger ◽  
Jesús Zavala

Abstract We study the effects of inelastic dark matter self-interactions on the internal structure of a simulated Milky Way (MW)-size halo. Self-interacting dark matter (SIDM) is an alternative to collisionless cold dark matter (CDM) which offers a unique solution to the problems encountered with CDM on sub-galactic scales. Although previous SIDM simulations have mainly considered elastic collisions, theoretical considerations motivate the existence of multi-state dark matter where transitions from the excited to the ground state are exothermic. In this work, we consider a self-interacting, two-state dark matter model with inelastic collisions, implemented in the Arepo code. We find that energy injection from inelastic self-interactions reduces the central density of the MW halo in a shorter timescale relative to the elastic scale, resulting in a larger core size. Inelastic collisions also isotropize the orbits, resulting in an overall lower velocity anisotropy for the inelastic MW halo. In the inner halo, the inelastic SIDM case (minor-to-major axis ratio s ≡ c/a ≈ 0.65) is more spherical than the CDM (s ≈ 0.4), but less spherical than the elastic SIDM case (s ≈ 0.75). The speed distribution f(v) of dark matter particles at the location of the Sun in the inelastic SIDM model shows a significant departure from the CDM model, with f(v) falling more steeply at high speeds. In addition, the velocity kicks imparted during inelastic collisions produce unbound high-speed particles with velocities up to 500 km s−1 throughout the halo. This implies that inelastic SIDM can potentially leave distinct signatures in direct detection experiments, relative to elastic SIDM and CDM.


Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 358
Author(s):  
Roberto Casadio ◽  
Andrea Giusti

Bootstrapped Newtonian gravity was developed with the purpose of estimating the impact of quantum physics in the nonlinear regime of the gravitational interaction, akin to corpuscular models of black holes and inflation. In this work, we set the ground for extending the bootstrapped Newtonian picture to cosmological spaces. We further discuss how such models of quantum cosmology can lead to a natural solution to the cosmological constant problem.


2020 ◽  
Vol 72 (1) ◽  
Author(s):  
Arif A. Al Nooryani ◽  
Nagwa A. Abdelrahman ◽  
Hatem A. Helmy ◽  
Yehia T. Kishk ◽  
Ayman K. M. Hassan

Abstract Background Optical coherence tomography showed a great ability to identify adverse features during percutaneous coronary intervention with drug-eluting stents and resulted in better clinical outcomes. The study aimed to assess the impact of optical coherence tomography on intraoperative decision-making during implantation of Absorb bioresorbable scaffolds versus everolimus drug-eluting stents. Results We performed an observational study that included 223 consecutive patients post optical coherence tomography-guided implantation of either Absorb bioresorbable scaffolds (162 patients) or everolimus drug-eluting stents (61 patients). We studied the influence of optical coherence tomography on intraoperative decision-making during implantation of bioresorbable scaffolds versus drug-eluting stents by analyzing the total rate of optical coherence tomography-dependent modifications in each device. After satisfactory angiographic results, the total rate of required intervention for optical coherence tomography detected complications was significantly higher in the bioresorbable scaffolds arm compared to drug-eluting stents arm (47.8% versus 32.9%, respectively; p = 0.019). The additional modifications encompassed further optimization in the case of device underexpansion or struts malapposition, and even stenting in the case of strut fractures, or significant edge dissection. Conclusions Compared to drug-eluting stents, Absord scaffold was associated with a significantly higher rate of optical coherence tomography-identified intraprocedural complications necessitating further modifications. The study provides some hints on the reasons of scaffolds failure in current PCI practice; it offers a new insight for the enhancement of BRS safety and presents and adds to the growing literature for successful BRS utilization.


2019 ◽  
Vol 15 (S356) ◽  
pp. 143-143
Author(s):  
Jaya Maithil ◽  
Michael S. Brotherton ◽  
Bin Luo ◽  
Ohad Shemmer ◽  
Sarah C. Gallagher ◽  
...  

AbstractActive Galactic Nuclei (AGN) exhibit multi-wavelength properties that are representative of the underlying physical processes taking place in the vicinity of the accreting supermassive black hole. The black hole mass and the accretion rate are fundamental for understanding the growth of black holes, their evolution, and the impact on the host galaxies. Recent results on reverberation-mapped AGNs show that the highest accretion rate objects have systematic shorter time-lags. These super-Eddington accreting massive black holes (SEAMBHs) show BLR size 3-8 times smaller than predicted by the Radius-Luminosity (R-L) relationship. Hence, the single-epoch virial black hole mass estimates of highly accreting AGNs have an overestimation of a factor of 3-8 times. SEAMBHs likely have a slim accretion disk rather than a thin disk that is diagnostic in X-ray. I will present the extreme X-ray properties of a sample of dozen of SEAMBHs. They indeed have a steep hard X-ray photon index, Γ, and demonstrate a steeper power-law slope, ασx.


Author(s):  
Lorenzo Cangiano ◽  
Sabrina Asteriti

AbstractIn the vertebrate retina, signals generated by cones of different spectral preference and by highly sensitive rod photoreceptors interact at various levels to extract salient visual information. The first opportunity for such interaction is offered by electrical coupling of the photoreceptors themselves, which is mediated by gap junctions located at the contact points of specialised cellular processes: synaptic terminals, telodendria and radial fins. Here, we examine the evolutionary pressures for and against interphotoreceptor coupling, which are likely to have shaped how coupling is deployed in different species. The impact of coupling on signal to noise ratio, spatial acuity, contrast sensitivity, absolute and increment threshold, retinal signal flow and colour discrimination is discussed while emphasising available data from a variety of vertebrate models spanning from lampreys to primates. We highlight the many gaps in our knowledge, persisting discrepancies in the literature, as well as some major unanswered questions on the actual extent and physiological role of cone-cone, rod-cone and rod-rod communication. Lastly, we point toward limited but intriguing evidence suggestive of the ancestral form of coupling among ciliary photoreceptors.


Sign in / Sign up

Export Citation Format

Share Document