scholarly journals WATCAT: a tale of wide-angle tailed radio galaxies

2019 ◽  
Vol 626 ◽  
pp. A8 ◽  
Author(s):  
V. Missaglia ◽  
F. Massaro ◽  
A. Capetti ◽  
M. Paolillo ◽  
R. P. Kraft ◽  
...  

We present a catalog of 47 wide-angle tailed radio galaxies (WATs), the WATCAT, mainly built including a radio morphological classification; WATs were selected by combining observations from the National Radio Astronomy Observatory/Very Large Array Sky Survey (NVSS), the Faint Images of the Radio Sky at Twenty-Centimeters (FIRST), and the Sloan Digital Sky Survey (SDSS). We included in the catalog only radio sources showing two-sided jets with two clear “warmspots” (i.e., jet knots as bright as 20% of the nucleus) lying on the opposite side of the radio core, and having classical extended emission resembling a plume beyond them. The catalog is limited to redshifts z ≤ 0.15, and lists only sources with radio emission extended beyond 30 kpc from the host galaxy. We found that host galaxies of WATCAT sources are all luminous (−20.5 ≳ Mr ≳ −23.7), red early-type galaxies with black hole masses in the range 108 ≲ MBH ≲ 109 M⊙. The spectroscopic classification indicates that they are all low-excitation galaxies (LEGs). Comparing WAT multifrequency properties with those of FR I and FR II radio galaxies at the same redshifts, we conclude that WATs show multifrequency properties remarkably similar to FR I radio galaxies, having radio power of typical FR IIs.

Author(s):  
Ting-Wen Lan ◽  
J Xavier Prochaska

Abstract We test the hypothesis that environments play a key role in enabling the growth of enormous radio structures spanning more than 700 kpc, an extreme population of radio galaxies called giant radio galaxies (GRGs). To achieve this, we explore (1) the relationships between the occurrence of GRGs and the surface number density of surrounding galaxies, including satellite galaxies and galaxies from neighboring halos, as well as (2) the GRG locations towards large-scale structures. The analysis is done by making use of a homogeneous sample of 110 GRGs detected from the LOFAR Two-metre Sky Survey in combination with photometric galaxies from the DESI Legacy Imaging Surveys and a large-scale filament catalog from the Sloan Digital Sky Survey. Our results show that the properties of galaxies around GRGs are similar with that around the two control samples, consisting of galaxies with optical colors and luminosity matched to the properties of the GRG host galaxies. Additionally, the properties of surrounding galaxies depend on neither their relative positions to the radio jet/lobe structures nor the sizes of GRGs. We also find that the locations of GRGs and the control samples with respect to the nearby large-scale structures are consistent with each other. These results demonstrate that there is no correlation between the GRG properties and their environments traced by stars, indicating that external galaxy environments are not the primary cause of the large sizes of the radio structures. Finally, regarding radio feedback, we show that the fraction of blue satellites does not correlate with the GRG properties, suggesting that the current epoch of radio jets have minimal influence on the nature of their surrounding galaxies.


2020 ◽  
Vol 72 (5) ◽  
Author(s):  
Toru Ishino ◽  
Yoshiki Matsuoka ◽  
Shuhei Koyama ◽  
Yuya Saeda ◽  
Michael A Strauss ◽  
...  

Abstract Active galactic nuclei (AGNs) are key in understanding the coevolution of galaxies and supermassive black holes (SMBHs). AGN activity is thought to affect the properties of their host galaxies via a process called “AGN feedback,” which drives the coevolution. From a parent sample of 1151 z < 1 type-1 quasars from the Sloan Digital Sky Survey quasar catalog, we detected the host galaxies of 862 of them in the high-quality grizy images of the Subaru Hyper Suprime-Cam survey. The unprecedented combination of the survey area and depth allowed us to perform a statistical analysis of the quasar host galaxies, with small sample variance. We fitted the radial image profile of each quasar as a linear combination of the point spread function and the Sérsic function, decomposing the images into the quasar nucleus and the host galaxy components. We found that the host galaxies are massive, with stellar mass Mstar ≳ 1010 $M_\odot$, and are mainly located on the green valley. This trend is consistent with a scenario in which star formation in the host galaxies is suppressed by AGN feedback, that is, AGN activity may be responsible for the transition of these galaxies from the blue cloud to the red sequence. We also investigated the SMBH mass to stellar mass relation of the z < 1 quasars, and found a consistent slope with the local relation, while the SMBHs may be slightly undermassive. However, the above results are subject to our sample selection, which biases against host galaxies with low masses and/or large quasar-to-host flux ratios.


2019 ◽  
Vol 15 (S356) ◽  
pp. 361-363
Author(s):  
Natalia Żywucka ◽  
Dorota Koziel-Wierzbowska ◽  
Arti Goyal

AbstractWe present the catalogue of Radio sources associated with Optical Galaxies and having Unresolved or Extended morphologies I (ROGUE I). It was generated by cross-matching galaxies from the Sloan Digital Sky Survey Data Release 7 (SDSS DR 7) as well as radio sources from the First Images of Radio Sky at Twenty Centimetre (FIRST) and the National Radio Astronomical Observatory VLA Sky Survey (NVSS) catalogues. We created the largest handmade catalogue of visually classified radio objects and associated with them optical host galaxies, containing 32,616 galaxies with a FIRST core within 3 arcsec of the optical position. All listed objects possess the good quality SDSS DR 7 spectra with the signal-to-noise ratio > 10 and spectroscopic redshifts up to z = 0.6. The radio morphology classification was performed by a visual examination of the FIRST and the NVSS contour maps overlaid on a DSS image, while an optical morphology classification was based on the 120 arcsec snapshot images from SDSS DR 7.The majority of radio galaxies in ROGUE I, i.e. ∼ 93%, are unresolved (compact or elongated), while the rest of them exhibit extended morphologies, such as Fanaroff-Riley (FR) type I, II, and hybrid, wide-angle tail, narrow-angle tail, head-tail sources, and sources with intermittent or reoriented jet activity, i.e. double–double, X–shaped, and Z–shaped. Most of FR IIs have low radio luminosities, comparable to the luminosities of FR Is. Moreover, due to visual check of all radio maps and optical images, we were able to discover or reclassify a number of radio objects as giant, double–double, X–shaped, and Z–shaped radio galaxies. The presented sample can serve as a database for training automatic methods of identification and classification of optical and radio galaxies.


2018 ◽  
Vol 620 ◽  
pp. A25
Author(s):  
G. Di Gennaro ◽  
T. Venturi ◽  
D. Dallacasa ◽  
S. Giacintucci ◽  
P. Merluzzi ◽  
...  

Context. The Shapley Concentration (⟨z⟩ ≈ 0.048) covers several degrees in the southern hemisphere, and includes galaxy clusters in advanced evolutionary stages, groups of clusters in the very early stages of merger, fairly massive clusters with ongoing accretion activity, and smaller groups located in filaments in the regions between the main clusters. Aims. With the goal to investigate the role of cluster mergers and accretion on the radio galaxy population, we performed a multi-wavelength study of the brightest cluster galaxies (BCGs) and of the galaxies showing extended radio emission in the cluster complexes of Abell 3528 and Abell 3558. In total, our study is based on a sample of 12 galaxies. Methods. We observed the clusters with the Giant Metrewave Radio Telescope (GMRT) at 235, 325, and 610 MHz, and with the Very Large Array (VLA) at 8.46 GHz. We complemented our study with the TIFR GMRT Sky Survey (TGSS) at 150 MHz, the Sydney University Molonglo Sky Survey (SUMSS) at 843 MHz, and the Australia Telescope Compact array (ATCA) at 1380, 1400, 2380, and 4790 MHz data. Finally, optical imaging with the VLT Survey Telescope (VST) is also available for the host galaxies as well as the mid-infrared coverage with the Wide-Field Infrared Survey Explorer (WISE). Results. We found significant differences in the properties of the radio emission of the BCGs in the two cluster complexes. The BCGs in the A 3528 complex and in A 3556, which are relaxed cool-core objects, are powerful active radio galaxies. They also present hints of restarted activity. On the contrary, the BCGs in A 3558 and A 3562, which are well-known merging systems, are very faint, or quiet, in the radio band. The optical and infrared properties of the galaxies, on the other hand, are fairly similar in the two complexes, showing all passive red galaxies. Conclusions. Our study shows remarkable differences in the radio properties of the BGCs, which we relate to the different dynamical state of the host cluster. On the contrary, the lack of changes between such different environments in the optical band suggests that the dynamical state of galaxy clusters does not affect the optical counterparts of the radio galaxies, at least over the lifetime of the radio emission.


2009 ◽  
Vol 5 (S267) ◽  
pp. 268-268
Author(s):  
Carol E. Thornton ◽  
Aaron J. Barth ◽  
Luis C. Ho ◽  
Jenny E. Greene

The Sloan Digital Sky Survey has made it possible to identify the first samples of active galaxies with estimated black hole masses below ~ 106M⊙. We have obtained Spitzer IRS low-resolution spectra, covering 5–38 μm, of a sample of 41 Seyfert galaxies with low-mass black holes. Our sample includes SDSS-selected objects from the low-mass Seyfert 1 sample of Greene & Ho (2004) and the low-mass Seyfert 2 sample of Barth et al. (2008), as well as NGC 4395 and POX 52. The goals of this work are to examine the dust emission properties of these objects and investigate the relationship between type 1 and type 2 AGNs at low luminosities and low masses, to search for evidence of star formation, and to use emission-line diagnostics to constrain physical conditions within the narrow-line regions. Here we present preliminary results from this project.


2020 ◽  
Vol 492 (4) ◽  
pp. 5297-5312 ◽  
Author(s):  
Eliab Malefahlo ◽  
Mario G Santos ◽  
Matt J Jarvis ◽  
Sarah V White ◽  
Jonathan T L Zwart

ABSTRACT We present the radio luminosity function (RLF) of optically selected quasars below 1 mJy, constructed by applying a Bayesian-fitting stacking technique to objects well below the nominal radio flux density limit. We test the technique using simulated data, confirming that we can reconstruct the RLF over three orders of magnitude below the typical 5σ detection threshold. We apply our method to 1.4-GHz flux densities from the Faint Images of the Radio Sky at Twenty-Centimeters (FIRST) survey, extracted at the positions of optical quasars from the Sloan Digital Sky Survey over seven redshift bins up to z = 2.15, and measure the RLF down to two orders of magnitude below the FIRST detection threshold. In the lowest redshift bin (0.2 < z < 0.45), we find that our measured RLF agrees well with deeper data from the literature. The RLF for the radio-loud quasars flattens below $\log _{10}[L_{1.4}/{\rm W\, Hz}^{-1}] \approx 25.5$ and becomes steeper again below $\log _{10}[L_{1.4}/{\rm W\, Hz}^{-1}] \approx 24.8$, where radio-quiet quasars start to emerge. The radio luminosity where radio-quiet quasars emerge coincides with the luminosity where star-forming galaxies are expected to start dominating the radio source counts. This implies that there could be a significant contribution from star formation in the host galaxies, but additional data are required to investigate this further. The higher redshift bins show a similar behaviour to the lowest z bin, implying that the same physical process may be responsible.


2019 ◽  
Vol 631 ◽  
pp. A132 ◽  
Author(s):  
S. J. Molyneux ◽  
C. M. Harrison ◽  
M. E. Jarvis

Using a sample of 2922 z <  0.2, spectroscopically identified active galactic nuclei (AGN), we explore the relationship between radio size and the prevalence of extreme ionised outflows, as traced using broad [O III] emission-line profiles in spectra obtained by the Sloan Digital Sky Survey (SDSS). To classify radio sources as compact or extended, we combined a machine-learning technique for morphological classification with size measurements from two-dimensional Gaussian models to data from all-sky radio surveys. We find that the two populations have statistically different [O III] emission-line profiles; the compact sources tend to have the most extreme gas kinematics. When the radio emission is confined within 3″ (i.e. within the spectroscopic fibre or ≲5 kpc at the median redshift), the chance of observing broad [O III] emission-line components, which are indicative of very high velocity outflows and have a full width at half-maximum > 1000 km s−1, is twice as high. This difference is greatest for the highest radio luminosity bin of log[L1.4 GHz/W Hz−1] = 23.5−24.5 where the AGN dominate the radio emission; specifically, > 1000 km s−1 components are almost four times as likely to occur when the radio emission is compact in this subsample. Our follow-up ≈0.3″–1″ resolution radio observations for a subset of targets in this luminosity range reveal that radio jets and lobes are prevalent, and suggest that compact jets might be responsible for the stronger outflows in the wider sample. Our results are limited by the available relatively shallow all-sky radio surveys, but forthcoming surveys will provide a more complete picture of the connection between radio emission and outflows. Overall, our results add to the growing body of evidence that ionised outflows and compact radio emission in highly accreting “radiative” AGN are closely connected, possibly as a result of young or weak radio jets.


2009 ◽  
Vol 5 (S267) ◽  
pp. 110-110
Author(s):  
Mei-Ling Huang ◽  
Lin-wen Chen

AbstractWe have identified ~500 relatively relaxed galaxy clusters at low redshift (z < 0.3) from the maxBCG catalog with double radio lobes at the center; about 200 radio counterparts of brightest cluster galaxies (BCGs) of these clusters appear to be wide-angle tailed (WAT) radio sources, indicating ongoing interaction between its host galaxy and the surrounding ICM. Our analysis suggests that the radio power of WAT is positively correlated with the optical luminosities of host BCGs, and increases with redshift; whereas the cluster ellipticity-radio galaxy fraction relation shows no obvious difference between WAT and non-WAT clusters.


2020 ◽  
Vol 494 (2) ◽  
pp. 2053-2067
Author(s):  
J C S Pierce ◽  
C N Tadhunter ◽  
R Morganti

ABSTRACT In the past decade, high-sensitivity radio surveys have revealed that the local radio active galactic nucleus population is dominated by moderate-to-low power sources with emission that is compact on galaxy scales. High-excitation radio galaxies (HERGs) with intermediate radio powers (22.5 &lt; log (L1.4 GHz) &lt; 25.0 W Hz−1) form an important sub-group of this population, since there is strong evidence that they also drive multiphase outflows on the scales of galaxy bulges. Here, we present high-resolution Very Large Array observations at 1.5, 4.5, and 7.5 GHz of a sample of 16 such HERGs in the local universe (z &lt; 0.1), conducted in order to investigate the morphology, extent, and spectra of their radio emission in detail, down to sub-kpc scales. We find that the majority (56 per cent) have unresolved structures at the limiting angular resolution of the observations (∼0.3 arcsec). Although similar in the compactness of their radio structures, these sources have steep radio spectra and host galaxy properties that distinguish them from local low-excitation radio galaxies that are unresolved on similar scales. The remaining sources exhibit extended radio structures with projected diameters ∼1.4–19.0 kpc and a variety of morphologies: three double-lobed; two large-scale diffuse; one jetted and ‘S-shaped’; one undetermined. Only 19 per cent of the sample therefore exhibit the double-lobed/edge-brightened structures often associated with their counterparts at high and low radio powers: radio-powerful HERGs and Seyfert galaxies, respectively. Additional high-resolution observations are required to investigate this further, and to probe the ≲300 pc scales on which some Seyfert galaxies show extended structures.


1996 ◽  
Vol 175 ◽  
pp. 248-249
Author(s):  
M.J. Kukula ◽  
J.S. Dunlop ◽  
G.L. Taylor ◽  
D.H. Hughes

A clear understanding of both the differences and similarities between the host galaxies of the three main classes of powerful active galaxy – radio-quiet quasars (RQQs), radio-loud quasars (RLQs) and radio galaxies (RGs) – is vital in any attempt to unify or relate the various manifestations of the AGN phenomenon. The unification of RLQs and RGs via orientation effects requires that the hosts of the two types be derived from the same population of galaxies. Meanwhile, the correlation between radio power and host morphology in nearby AGN, with radio-quiet objects (Seyferts) occurring in disc systems and radio-loud sources in ellipticals, is generally assumed to persist at higher redshifts and nuclear luminosities. However, in both cases the evidence remains ambiguous and, moreover, many previous studies have been based on poorly selected samples.


Sign in / Sign up

Export Citation Format

Share Document