scholarly journals The orientation of galaxy pairs with filamentary structures: dependence on morphology

2018 ◽  
Vol 619 ◽  
pp. A24 ◽  
Author(s):  
Valeria Mesa ◽  
Fernanda Duplancic ◽  
Sol Alonso ◽  
Maria Rosa Muñoz Jofré ◽  
Georgina Coldwell ◽  
...  

Aims. With the aim of performing an analysis of the orientations of galaxy pair systems with respect to the underlying large-scale structure, we study the alignment between the axis connecting the pair galaxies and the host cosmic filament where the pair resides. In addition, we analyze the dependence of the amplitude of the alignment on the morphology of pair members as well as filament properties. Methods. We build a galaxy pair catalog requiring rp < 100 h−1 kpc and ΔV < 500 km s−1 within redshift z < 0.1 from the Sloan Digital Sky Survey (SDSS). We divided the galaxy pair catalog taking into account the morphological classification by defining three pair categories composed by elliptical–elliptical (E–E), elliptical–spiral (E–S) and spiral–spiral (S–S) galaxies. We use a previously defined catalog of filaments obtained from SDSS and we select pairs located closer than 1 h−1 Mpc to the filament spine, which are considered as members of filaments. For these pairs, we calculate the relative angle between the axis connecting each galaxy, and the direction defined by the spine of the parent filament. Results. We find a statistically significant alignment signal between the pair axes and the spine of the host filaments consistent with a relative excess of ∼15% aligned pairs. We obtain that pairs composed by elliptical galaxies exhibit a stronger alignment, showing a higher alignment signal for pairs closer than 200 h−1 kpc to the filament spine. In addition, we find that the aligned pairs are associated with luminous host filaments populated with a high fraction of elliptical galaxies. The findings of this work show that large-scale structures play a fundamental role in driving galactic anisotropic accretion as induced by galaxy pairs exhibiting a preferred alignment along the filament direction.

2006 ◽  
Vol 6 (1) ◽  
pp. 35-42 ◽  
Author(s):  
Xin-Fa Deng ◽  
Yi-Qing Chen ◽  
Qun Zhang ◽  
Ji-Zhou He

Author(s):  
Ting-Wen Lan ◽  
J Xavier Prochaska

Abstract We test the hypothesis that environments play a key role in enabling the growth of enormous radio structures spanning more than 700 kpc, an extreme population of radio galaxies called giant radio galaxies (GRGs). To achieve this, we explore (1) the relationships between the occurrence of GRGs and the surface number density of surrounding galaxies, including satellite galaxies and galaxies from neighboring halos, as well as (2) the GRG locations towards large-scale structures. The analysis is done by making use of a homogeneous sample of 110 GRGs detected from the LOFAR Two-metre Sky Survey in combination with photometric galaxies from the DESI Legacy Imaging Surveys and a large-scale filament catalog from the Sloan Digital Sky Survey. Our results show that the properties of galaxies around GRGs are similar with that around the two control samples, consisting of galaxies with optical colors and luminosity matched to the properties of the GRG host galaxies. Additionally, the properties of surrounding galaxies depend on neither their relative positions to the radio jet/lobe structures nor the sizes of GRGs. We also find that the locations of GRGs and the control samples with respect to the nearby large-scale structures are consistent with each other. These results demonstrate that there is no correlation between the GRG properties and their environments traced by stars, indicating that external galaxy environments are not the primary cause of the large sizes of the radio structures. Finally, regarding radio feedback, we show that the fraction of blue satellites does not correlate with the GRG properties, suggesting that the current epoch of radio jets have minimal influence on the nature of their surrounding galaxies.


2014 ◽  
Vol 11 (S308) ◽  
pp. 299-300
Author(s):  
Shishir Sankhyayan ◽  
J. Bagchi ◽  
P. Sarkar ◽  
V. Sahni ◽  
J. Jacob

AbstractWe have initiated the search and detailed study of large scale structures present in the universe using galaxy redshift surveys. In this process, we take the volume-limited sample of galaxies from Sloan Digital Sky Survey III and find very large structures even beyond the redshift of 0.2. One of the structures is even greater than 600 Mpc which raises a question on the homogeneity scale of the universe. The shapes of voids-structures (adjacent to each other) seem to be correlated, which supports the physical existence of the observed structures. The other observational supports include galaxy clusters' and QSO distribution's correlation with the density peaks of the volume limited sample of galaxies.


Author(s):  
Michael Ramuta

A grasp of the life-cycles of large-scale structures is critical to understanding the Universe. This can be accomplished through the study of poor clusters-- that is, younger clusters that are likely evolving to another state. The selected clusters are significant in that they are poor but also possess a type-cD galaxy. This brighter central galaxy suggests that these clusters may be dynamically evolved and are potential candidates for fossil groups. In order to more fully understand the structure and behavior of poor galaxy clusters, 12 clusters were selected and analyzed. Using data from the Sloan Digital Sky Survey, Chandra X-Ray Archive, and the VLA FIRST Survey, we present x-ray profiles and radio observations of these 12 galaxy clusters. 


2020 ◽  
Vol 497 (4) ◽  
pp. 4077-4090 ◽  
Author(s):  
Suman Sarkar ◽  
Biswajit Pandey

ABSTRACT A non-zero mutual information between morphology of a galaxy and its large-scale environment is known to exist in Sloan Digital Sky Survey (SDSS) upto a few tens of Mpc. It is important to test the statistical significance of these mutual information if any. We propose three different methods to test the statistical significance of these non-zero mutual information and apply them to SDSS and Millennium run simulation. We randomize the morphological information of SDSS galaxies without affecting their spatial distribution and compare the mutual information in the original and randomized data sets. We also divide the galaxy distribution into smaller subcubes and randomly shuffle them many times keeping the morphological information of galaxies intact. We compare the mutual information in the original SDSS data and its shuffled realizations for different shuffling lengths. Using a t-test, we find that a small but statistically significant (at $99.9{{\ \rm per\ cent}}$ confidence level) mutual information between morphology and environment exists upto the entire length-scale probed. We also conduct another experiment using mock data sets from a semi-analytic galaxy catalogue where we assign morphology to galaxies in a controlled manner based on the density at their locations. The experiment clearly demonstrates that mutual information can effectively capture the physical correlations between morphology and environment. Our analysis suggests that physical association between morphology and environment may extend to much larger length-scales than currently believed, and the information theoretic framework presented here can serve as a sensitive and useful probe of the assembly bias and large-scale environmental dependence of galaxy properties.


2014 ◽  
Vol 11 (S308) ◽  
pp. 368-371
Author(s):  
Jukka Nevalainen ◽  
L. J. Liivamägi ◽  
E. Tempel ◽  
E. Branchini ◽  
M. Roncarelli ◽  
...  

AbstractWe have developed a new method to approach the missing baryons problem. We assume that the missing baryons reside in a form of Warm Hot Intergalactic Medium, i.e. the WHIM. Our method consists of (a) detecting the coherent large scale structure in the spatial distribution of galaxies that traces the Cosmic Web and that in hydrodynamical simulations is associated to the WHIM, (b) mapping its luminosity into a galaxy luminosity density field, (c) using numerical simulations to relate the luminosity density to the density of the WHIM, (d) applying this relation to real data to trace the WHIM using the observed galaxy luminosities in the Sloan Digital Sky Survey and 2dF redshift surveys. In our application we find evidence for the WHIM along the line of sight to the Sculptor Wall, at redshifts consistent with the recently reported X-ray absorption line detections. Our indirect WHIM detection technique complements the standard method based on the detection of characteristic X-ray absorption lines, showing that the galaxy luminosity density is a reliable signpost for the WHIM. For this reason, our method could be applied to current galaxy surveys to optimise the observational strategies for detecting and studying the WHIM and its properties. Our estimates of the WHIM hydrogen column density NH in Sculptor agree with those obtained via the X-ray analysis. Due to the additional NH estimate, our method has potential for improving the constrains of the physical parameters of the WHIM as derived with X-ray absorption, and thus for improving the understanding of the missing baryons problem.


2020 ◽  
Vol 642 ◽  
pp. A19 ◽  
Author(s):  
Nicola Malavasi ◽  
Nabila Aghanim ◽  
Marian Douspis ◽  
Hideki Tanimura ◽  
Victor Bonjean

Detecting the large-scale structure of the Universe based on the galaxy distribution and characterising its components is of fundamental importance in astrophysics but is also a difficult task to achieve. Wide-area spectroscopic redshift surveys are required to accurately measure galaxy positions in space that also need to cover large areas of the sky. It is also difficult to create algorithms that can extract cosmic web structures (e.g. filaments). Moreover, these detections will be affected by systematic uncertainties that stem from the characteristics of the survey used (e.g. its completeness and coverage) and from the unique properties of the specific method adopted to detect the cosmic web (i.e. the assumptions it relies on and the free parameters it may employ). For these reasons, the creation of new catalogues of cosmic web features on wide sky areas is important, as this allows users to have at their disposal a well-understood sample of structures whose systematic uncertainties have been thoroughly investigated. In this paper we present the filament catalogues created using the discrete persistent structure extractor tool in the Sloan Digital Sky Survey (SDSS), and we fully characterise them in terms of their dependence on the choice of parameters pertaining to the algorithm, and with respect to several systematic issues that may arise in the skeleton as a result of the properties of the galaxy distribution (such as Finger-of-God redshift distortions and defects of the density field that are due to the boundaries of the survey).


2009 ◽  
Vol 5 (S262) ◽  
pp. 428-429
Author(s):  
Ricardo P. Schiavon ◽  
Steven R. Majewski

AbstractThe Apache Point Observatory Galactic Evolution Experiment (APOGEE) is a large scale, high-resolution, near-infrared spectroscopic survey of Milky Way stellar populations and one of the four experiments in the Sloan Digital Sky Survey III (SDSS-III). APOGEE will be based on a new multi-fiber cryogenic spectrograph, currently under construction, expected to begin survey observations on the 2.5 m Sloan telescope in the Spring of 2011. APOGEE will measure high-precision radial velocities and elemental abundances for ~15 elements for ~ 105 stars, and is expected to shed new light on the processes that led to the formation of the Galaxy.


1997 ◽  
Vol 14 (1) ◽  
pp. 126-126 ◽  
Author(s):  
K. Wakamatsu ◽  
M. Malkan ◽  
Q. A. Parker ◽  
H. Karoji

A problem for studies of large scale structures in nearby space (cz < 10,000 km s-1) is the presence of the Zone of Avoidance which is so large and wide on the sky that potentially important clusters and voids remain undetected. A prime example was the Ophiuchus cluster discovered by Wakamatsu and Malkan (1981) as a heavily obscured cD cluster close to the Galactic centre region (l = 0·5°, b = +9·5°). It is the second brightest X-ray cluster after Perseus. A hidden galaxy survey was performed by visually searching ESO/SERC Sky Survey (R and J) copy films of the region centred at l = 355°, b = +10° finding more than 4000 galaxies in six fields. Several irregular clusters adjacent to Ophiuchus were found forming a supercluster which may be connected to the Hercules supercluster by a wall structure parallel to the local supergalactic plane (Wakamatsu et al. 1994). In front of this supercluster, an 'Ophiuchus Void' is suggested (cz = 4,500 km s-1). The Ophiuchus supercluster at cz = 8,500 km s-1 is similar to the Hercules supercluster (cz = 11,000 km s-1), and extends north toward the latter supercluster.


Sign in / Sign up

Export Citation Format

Share Document