scholarly journals Erratum: Tidal migration of hot Jupiters: introducing the impact of gravity wave dissipation

2022 ◽  
Vol 510 (2) ◽  
pp. 3111-3112
Author(s):  
Yaroslav A Lazovik
2010 ◽  
Vol 67 (8) ◽  
pp. 2537-2546 ◽  
Author(s):  
John F. Scinocca ◽  
Bruce R. Sutherland

Abstract A new effect related to the evaluation of momentum deposition in conventional parameterizations of orographic gravity wave drag (GWD) is considered. The effect takes the form of an adjustment to the basic-state wind about which steady-state wave solutions are constructed. The adjustment is conservative and follows from wave–mean flow theory associated with wave transience at the leading edge of the wave train, which sets up the steady solution assumed in such parameterizations. This has been referred to as “self-acceleration” and it is shown to induce a systematic lowering of the elevation of momentum deposition, which depends quadratically on the amplitude of the wave. An expression for the leading-order impact of self-acceleration is derived in terms of a reduction of the critical inverse Froude number Fc, which determines the onset of wave breaking for upwardly propagating waves in orographic GWD schemes. In such schemes Fc is a central tuning parameter and typical values are generally smaller than anticipated from conventional wave theory. Here it is suggested that self-acceleration may provide some of the explanation for why such small values of Fc are required. The impact of Fc on present-day climate is illustrated by simulations of the Canadian Middle Atmosphere Model.


2014 ◽  
Vol 27 (14) ◽  
pp. 5601-5610 ◽  
Author(s):  
Michael Sigmond ◽  
Theodore G. Shepherd

Abstract Following recent findings, the interaction between resolved (Rossby) wave drag and parameterized orographic gravity wave drag (OGWD) is investigated, in terms of their driving of the Brewer–Dobson circulation (BDC), in a comprehensive climate model. To this end, the parameter that effectively determines the strength of OGWD in present-day and doubled CO2 simulations is varied. The authors focus on the Northern Hemisphere during winter when the largest response of the BDC to climate change is predicted to occur. It is found that increases in OGWD are to a remarkable degree compensated by a reduction in midlatitude resolved wave drag, thereby reducing the impact of changes in OGWD on the BDC. This compensation is also found for the response to climate change: changes in the OGWD contribution to the BDC response to climate change are compensated by opposite changes in the resolved wave drag contribution to the BDC response to climate change, thereby reducing the impact of changes in OGWD on the BDC response to climate change. By contrast, compensation does not occur at northern high latitudes, where resolved wave driving and the associated downwelling increase with increasing OGWD, both for the present-day climate and the response to climate change. These findings raise confidence in the credibility of climate model projections of the strengthened BDC.


2012 ◽  
Vol 751 (2) ◽  
pp. 87 ◽  
Author(s):  
Ian Dobbs-Dixon ◽  
Eric Agol ◽  
Adam Burrows
Keyword(s):  

Geophysics ◽  
2018 ◽  
Vol 83 (3) ◽  
pp. WC71-WC81 ◽  
Author(s):  
Weitao Sun ◽  
Fansheng Xiong ◽  
Jing Ba ◽  
José M. Carcione

Reservoir rocks are heterogeneous porous media saturated with multiphase fluids, in which strong wave dissipation and velocity dispersion are closely associated with fabric heterogeneities and patchy saturation at different scales. The irregular solid inclusions and fluid patches are ubiquitous in nature, whereas the impact of geometry on wave dissipation is still not well-understood. We have investigated the dependence of wave attenuation and velocity on patch geometry. The governing equations for wave propagation in a porous medium, containing fluid/solid heterogeneities of ellipsoidal triple-layer patches, are derived from the Lagrange equations on the basis of the potential and kinetic energies. Harmonic functions describe the wave-induced local fluid flow of an ellipsoidal patch. The effects of the aspect ratio on wave velocity are illustrated with numerical examples and comparisons with laboratory measurements. The results indicate that the P-wave velocity dispersion and attenuation depend on the aspect ratio of the ellipsoidal heterogeneities, especially in the intermediate frequency range. In the case of Fort Union sandstone, the P-wave velocity increases toward an upper bound as the aspect ratio decreases. The example of a North Sea sandstone clearly indicates that introducing ellipsoidal heterogeneities gives a better description of laboratory data than that based on spherical patches. The unexpected high-velocity values previously reported and ascribed to sample heterogeneities are explained by varying the aspect ratio of the inclusions (or patches).


2006 ◽  
Vol 63 (12) ◽  
pp. 3253-3276 ◽  
Author(s):  
Christoph Zülicke ◽  
Dieter Peters

Poleward-breaking Rossby waves often induce an upper-level jet streak over northern Europe. Dominant inertia–gravity wave packets are observed downstream of this jet. The physical processes of their generation and propagation, in such a configuration, are investigated with a mesoscale model. The study is focused on an observational campaign from 17 to 19 December 1999 over northern Germany. Different simulations with the fifth-generation Pennsylvania State University–National Center for Atmospheric Research (PSU–NCAR) Mesoscale Model (MM5) have been performed. For a high-resolution process study, three domains were set up that encompass the evolution of Rossby waves and that of inertia–gravity waves. To minimize the impact of model damping, the horizontal and vertical resolution has been adjusted appropriately. With a novel statistical approach, the properties of inertia–gravity wave packets have been estimated. This method uses the horizontal divergence field and takes into account the spatial extension of a wave packet. It avoids the explicit treatment of the background field and works for arbitrary wavelength. Two classes of inertia–gravity waves were found: subsynoptic waves with a horizontal wavelength of about 500 km and mesoscale waves with a horizontal wavelength of about 200 km. The subsynoptic structures were also detected in radiosonde observations during this campaign. The similarity between simulated and observed wavelengths and amplitudes suggests that the simulations can be considered as near realistic. Spontaneous radiation from unbalanced flow is an important process of inertia–gravity wave generation. Synoptic-scale imbalances in the exit region of the upper-tropospheric jet streak were identified with the smoothed cross-stream Lagrangian Rossby number. In a number of simulations with different physics, it was found that the inertia–gravity wave activity was related to the tropospheric jet, orography, and moist convection. The upward propagation of inertia–gravity waves was favored during this event of a poleward-breaking Rossby wave. The presence of the polar vortex induced background winds exceeding the critical line. Consequently, the activity of inertia–gravity waves in the lower stratosphere increased by an order of magnitude during the case study. The successful simulation of the complex processes of generation and propagation showed the important role of poleward Rossby wave breaking for the appearance of inertia–gravity waves in the midlatitudes.


2020 ◽  
Author(s):  
Annelize VanNiekerk ◽  
Irina Sandu

<p>Mountains are know to impact the atmospheric circulation on a variety of spatial scales and through a number of different processes. They exert a drag force on the atmosphere both locally through deflection of the flow and remotely through the generation of atmospheric gravity waves. The degree to which orographic drag parametrizations are able to capture the complex impacts on the circulation from realistic orography in high resolution simulations is examined here. We present results from COnstraing ORographic Drag Effects (COORDE), a project joint with the Working Group on Numerical Experimentation (WGNE) and Global Atmospheric System Studies (GASS). The aim of COORDE is to validate parametrized orographic drag in several operational models in order to determine both systematic and model dependent errors over complex terrain. To do this, we compare the effects of parametrized orographic drag on the circulation with those of the resolved orographic drag, deduced from km-scale resolution simulations which are able to resolve orographic low-level blocking and gravity-wave effects. We show that there is a large spread in the impact from parametrized orographic drag between the models but that the impact from resolved orography is much more robust. This is encouraging as it means that the km-scale simulations can be used to evaluate the caveats of the existing orographic drag parametrizations. Analysis of the parametrized drag tendencies and stresses shows that much of the spread in the parametrized orographic drag comes from differences in the partitioning of the drag into turbulent and flow blocking drag near the surface. What is more, much of the model error over complex terrain can be attributed to deficiencies in the parametrized orographic drag, particularly coming from the orographic gravity wave drag.</p>


2012 ◽  
Vol 69 (3) ◽  
pp. 802-818 ◽  
Author(s):  
Charles McLandress ◽  
Theodore G. Shepherd ◽  
Saroja Polavarapu ◽  
Stephen R. Beagley

Abstract Nearly all chemistry–climate models (CCMs) have a systematic bias of a delayed springtime breakdown of the Southern Hemisphere (SH) stratospheric polar vortex, implying insufficient stratospheric wave drag. In this study the Canadian Middle Atmosphere Model (CMAM) and the CMAM Data Assimilation System (CMAM-DAS) are used to investigate the cause of this bias. Zonal wind analysis increments from CMAM-DAS reveal systematic negative values in the stratosphere near 60°S in winter and early spring. These are interpreted as indicating a bias in the model physics, namely, missing gravity wave drag (GWD). The negative analysis increments remain at a nearly constant height during winter and descend as the vortex weakens, much like orographic GWD. This region is also where current orographic GWD parameterizations have a gap in wave drag, which is suggested to be unrealistic because of missing effects in those parameterizations. These findings motivate a pair of free-running CMAM simulations to assess the impact of extra orographic GWD at 60°S. The control simulation exhibits the cold-pole bias and delayed vortex breakdown seen in the CCMs. In the simulation with extra GWD, the cold-pole bias is significantly reduced and the vortex breaks down earlier. Changes in resolved wave drag in the stratosphere also occur in response to the extra GWD, which reduce stratospheric SH polar-cap temperature biases in late spring and early summer. Reducing the dynamical biases, however, results in degraded Antarctic column ozone. This suggests that CCMs that obtain realistic column ozone in the presence of an overly strong and persistent vortex may be doing so through compensating errors.


2019 ◽  
Author(s):  
Nadja Samtleben ◽  
Christoph Jacobi ◽  
Petr Pišoft ◽  
Petr Šácha ◽  
Aleš Kuchař

Abstract. In order to investigate the impact of a locally confined gravity wave (GW) hotspot, a sensitivity study based on simulations of the middle atmosphere circulation during northern winter was performed with a nonlinear, mechanistic, global circulation model. To this end, for the hotspot region we selected a fixed longitude range in the East Asian region (120° E–170° E) and a latitude range from 22.5° N–52.5° N between 18 km and 30 km, which was then shifted northward in steps of 5°. For the southernmost hotspots, we observe a decreased stationary planetary wave (SPW) 1 activity in the upper stratosphere/lower mesosphere, i.e. less SPWs 1 are propagating upwards. These GW hotspots are leading to a negative refractive index inhibiting SPW propagation at midlatitudes. The decreased SPW 1 activity is connected with an increased zonal mean zonal wind at lower latitudes. This in turn decreases the meridional potential vorticity gradient (qy) from midlatitudes towards the polar region. A reversed qy indicates local baroclinic instability which generates SPWs 1 in the polar region, where we observe a strong positive Eliassen-Palm (EP) divergence. Thus, the EP flux is increasing towards the polar stratosphere (corresponding to enhanced SPW 1 amplitudes) where the SPWs 1 are breaking and the zonal mean zonal wind is decreasing. Thus, the local GW forcing is leading to a displacement of the polar vortex towards lower latitudes. The effect of the local baroclinic instability indicated by the reversed qy also produces SPWs 1 in the lower mesosphere. The effect on the dynamics in the middle atmosphere by GW hotspots which are located northward of 50° N is negligible because the refractive index of the atmosphere is strongly negative in the polar region. Thus, any changes in the SPW activity due to the local GW forcing are quite ineffective.


2020 ◽  
Author(s):  
Juan M. Restrepo ◽  
Alex Ayet ◽  
Luigi Cavaleri

Abstract. We make a physical-mathematical analysis of the implications that the presence of a large number of tiny bubbles may have on the thin upper layer of the sea. In our oceanographic example the bubbles are due to an intense rain on an otherwise non-stormy surface; if stormy, other processes would take the role. For the direct effect we have analyzed, the implications are estimated non-significant when compared to other processes of the ocean. However, we hint to the possibility that our analysis may be useful in other areas of research or practical application.


Sign in / Sign up

Export Citation Format

Share Document