scholarly journals A new way to measure supermassive black hole spin in accretion disc-dominated active galaxies

2013 ◽  
Vol 434 (3) ◽  
pp. 1955-1963 ◽  
Author(s):  
Chris Done ◽  
C. Jin ◽  
M. Middleton ◽  
Martin Ward
Author(s):  
R Taverna ◽  
L Marra ◽  
S Bianchi ◽  
M Dovčiak ◽  
R Goosmann ◽  
...  

Abstract The study of radiation emitted from black hole accretion discs represents a crucial way to understand the main physical properties of these sources, and in particular the black hole spin. Beside spectral analysis, polarimetry is becoming more and more important, motivated by the development of new techniques which will soon allow to perform measurements also in the X- and γ-rays. Photons emitted from black hole accretion discs in the soft state are indeed expected to be polarized, with an energy dependence which can provide an estimate of the black hole spin. Calculations performed so far, however, considered scattering as the only process to determine the polarization state of the emitted radiation, implicitly assuming that the temperatures involved are such that material in the disc is entirely ionized. In this work we generalize the problem by calculating the ionization structure of a surface layer of the disc with the public code cloudy, and then by determining the polarization properties of the emerging radiation using the Monte Carlo code stokes. This allows us to account for absorption effects alongside scattering ones. We show that including absorption can deeply modify the polarization properties of the emerging radiation with respect to what is obtained in the pure-scattering limit. As a general rule, we find that the polarization degree is larger when absorption is more important, which occurs e.g. for low accretion rates and/or spins when the ionization of the matter in the innermost accretion disc regions is far from complete.


2020 ◽  
Vol 895 (1) ◽  
pp. 61 ◽  
Author(s):  
Shafqat Riaz ◽  
Dimitry Ayzenberg ◽  
Cosimo Bambi ◽  
Sourabh Nampalliwar

Universe ◽  
2019 ◽  
Vol 5 (8) ◽  
pp. 183 ◽  
Author(s):  
Vyacheslav I. Dokuchaev ◽  
Natalia O. Nazarova

We propose the simple new method for extracting the value of the black hole spin from the direct high-resolution image of black hole by using a thin accretion disk model. In this model, the observed dark region on the first image of the supermassive black hole in the galaxy M87, obtained by the Event Horizon Telescope, is a silhouette of the black hole event horizon. The outline of this silhouette is the equator of the event horizon sphere. The dark silhouette of the black hole event horizon is placed within the expected position of the black hole shadow, which is not revealed on the first image. We calculated numerically the relation between the observed position of the black hole silhouette and the brightest point in the thin accretion disk, depending on the black hole spin. From this relation, we derive the spin of the supermassive black hole M87*, a = 0.75 ± 0.15 .


Science ◽  
2019 ◽  
Vol 366 (6461) ◽  
pp. 97-100 ◽  
Author(s):  
H. Umehata ◽  
M. Fumagalli ◽  
I. Smail ◽  
Y. Matsuda ◽  
A. M. Swinbank ◽  
...  

Cosmological simulations predict that the Universe contains a network of intergalactic gas filaments, within which galaxies form and evolve. However, the faintness of any emission from these filaments has limited tests of this prediction. We report the detection of rest-frame ultraviolet Lyman-α radiation from multiple filaments extending more than one megaparsec between galaxies within the SSA22 protocluster at a redshift of 3.1. Intense star formation and supermassive black-hole activity is occurring within the galaxies embedded in these structures, which are the likely sources of the elevated ionizing radiation powering the observed Lyman-α emission. Our observations map the gas in filamentary structures of the type thought to fuel the growth of galaxies and black holes in massive protoclusters.


Science ◽  
2014 ◽  
Vol 345 (6192) ◽  
pp. 64-68 ◽  
Author(s):  
J. S. Kaastra ◽  
G. A. Kriss ◽  
M. Cappi ◽  
M. Mehdipour ◽  
P.-O. Petrucci ◽  
...  

Supermassive black holes in the nuclei of active galaxies expel large amounts of matter through powerful winds of ionized gas. The archetypal active galaxy NGC 5548 has been studied for decades, and high-resolution x-ray and ultraviolet (UV) observations have previously shown a persistent ionized outflow. An observing campaign in 2013 with six space observatories shows the nucleus to be obscured by a long-lasting, clumpy stream of ionized gas not seen before. It blocks 90% of the soft x-ray emission and causes simultaneous deep, broad UV absorption troughs. The outflow velocities of this gas are up to five times faster than those in the persistent outflow, and, at a distance of only a few light days from the nucleus, it may likely originate from the accretion disk.


2020 ◽  
Vol 499 (2) ◽  
pp. 2836-2844
Author(s):  
Camilo Fontecilla ◽  
Giuseppe Lodato ◽  
Jorge Cuadra

ABSTRACT At the final stages of a supermassive black hole coalescence, the emission of gravitational waves will efficiently remove energy, and angular momentum from the binary orbit, allowing the separation between the compact objects to shrink. In the scenario where a circumprimary disc is present, a squeezing phase will develop, in which the tidal interaction between the disc and the secondary black hole could push the gas inwards, enhancing the accretion rate on to the primary and producing what is known as an electromagnetic precursor. In this context, using 3D hydrodynamic simulations, we study how an adiabatic circumprimary accretion disc responds to the varying gravitational potential as the secondary falls on to the more massive object. We included a cooling prescription controlled by the parameter β = Ωtcool, which will determine how strong the final accretion rate is: a hotter disc is thicker, and the tidal interaction is suppressed for the gas outside the binary plane. Our main results are that for scenarios where the gas cannot cool fast enough (β ≥ 30), the disc becomes thick and renders the system invisible, while for β ≤ 10 the strong cooling blocks any leakage on to the secondary’s orbit, allowing an enhancement in the accretion rate of two orders of magnitude stronger than the average through the rest of the simulation.


2017 ◽  
Vol 472 (2) ◽  
pp. 2170-2180 ◽  
Author(s):  
Jaderson S. Schimoia ◽  
Thaisa Storchi-Bergmann ◽  
Cláudia Winge ◽  
Rodrigo S. Nemmen ◽  
Michael Eracleous

Sign in / Sign up

Export Citation Format

Share Document