scholarly journals A fast and long-lived outflow from the supermassive black hole in NGC 5548

Science ◽  
2014 ◽  
Vol 345 (6192) ◽  
pp. 64-68 ◽  
Author(s):  
J. S. Kaastra ◽  
G. A. Kriss ◽  
M. Cappi ◽  
M. Mehdipour ◽  
P.-O. Petrucci ◽  
...  

Supermassive black holes in the nuclei of active galaxies expel large amounts of matter through powerful winds of ionized gas. The archetypal active galaxy NGC 5548 has been studied for decades, and high-resolution x-ray and ultraviolet (UV) observations have previously shown a persistent ionized outflow. An observing campaign in 2013 with six space observatories shows the nucleus to be obscured by a long-lasting, clumpy stream of ionized gas not seen before. It blocks 90% of the soft x-ray emission and causes simultaneous deep, broad UV absorption troughs. The outflow velocities of this gas are up to five times faster than those in the persistent outflow, and, at a distance of only a few light days from the nucleus, it may likely originate from the accretion disk.

2020 ◽  
Vol 35 (02n03) ◽  
pp. 2040054
Author(s):  
M. Yu. Piotrovich ◽  
V. L. Afanasiev ◽  
S. D. Buliga ◽  
T. M. Natsvlishvili

Based on spectropolarimetry for a number of active galactic nuclei in Seyfert 1 type galaxies observed with the 6-m BTA telescope, we have estimated the spins of the supermassive black holes at the centers of these galaxies. We have determined the spins based on the standard Shakura-Sunyaev accretion disk model. More than 70% of the investigated active galactic nuclei are shown to have Kerr supermassive black holes with a dimensionless spin greater than 0.9.


Science ◽  
2019 ◽  
Vol 366 (6461) ◽  
pp. 97-100 ◽  
Author(s):  
H. Umehata ◽  
M. Fumagalli ◽  
I. Smail ◽  
Y. Matsuda ◽  
A. M. Swinbank ◽  
...  

Cosmological simulations predict that the Universe contains a network of intergalactic gas filaments, within which galaxies form and evolve. However, the faintness of any emission from these filaments has limited tests of this prediction. We report the detection of rest-frame ultraviolet Lyman-α radiation from multiple filaments extending more than one megaparsec between galaxies within the SSA22 protocluster at a redshift of 3.1. Intense star formation and supermassive black-hole activity is occurring within the galaxies embedded in these structures, which are the likely sources of the elevated ionizing radiation powering the observed Lyman-α emission. Our observations map the gas in filamentary structures of the type thought to fuel the growth of galaxies and black holes in massive protoclusters.


2009 ◽  
Vol 5 (S267) ◽  
pp. 362-369
Author(s):  
Keiichi Wada

AbstractIn order to clarify the physics of AGN feedback and feeding, we need to understand the interstellar medium (ISM) in the central several tens of parsecs in galaxies where our observational and theoretical knowledge is relatively poor. Here we discuss feedback processes due to strong far UV and X-ray radiation, as well as the dynamical effect of a supermassive black hole (SMBH) based on new high-resolution numerical simulations of the ISM in the central R ≤ 32 pc region around a SMBH at the center of a galaxy.


2003 ◽  
Vol 214 ◽  
pp. 243-245
Author(s):  
Stefanie Komossa ◽  
Weimin Yuan ◽  
Da Wei Xu

In the last few years, several giant-amplitude, non-recurrent X-ray flares have been observed from optically non-active galaxies. The observations were interpreted in terms of the long-predicted tidal disruption flares of stars captured by supermassive black holes. In this contribution, we review the observations and interpretation of the X-ray flares and add some new thoughts. Future X-ray observations of the flare events are expected to open up a new window to detect and investigate SMBHs and their immediate environment in galaxies. Here, we concentrate on the possibility to detect new X-ray flares in deep fields with the planned European X-ray mission XEUS.


2009 ◽  
Vol 5 (S267) ◽  
pp. 333-333
Author(s):  
Robyn Levine ◽  
Nickolay Y. Gnedin ◽  
Andrew J. S. Hamilton

Using a hydrodynamic adaptive mesh refinement code, we simulate the growth and evolution of a typical disk galaxy hosting a supermassive black hole (SMBH) within a cosmological volume. The simulation covers a dynamical range of 10 million, which allows us to study the transport of matter and angular momentum from super-galactic scales down to the outer edge of the accretion disk around the SMBH. A dynamically interesting circumnuclear disk develops in the central few hundred parsecs of the simulated galaxy, through which gas is stochastically transported to the central black hole.


2019 ◽  
Vol 15 (S359) ◽  
pp. 99-107
Author(s):  
C. Jones ◽  
W. Forman

AbstractSupermassive black holes (SMBHs) play[-105pt]Kindly check and confirm the Article Title. fundamental roles in the evolution of galaxies, groups, and clusters. The fossil record of supermassive black hole outbursts is seen through the cavities and shocks that are imprinted on these gas-rich systems. For M87, the central galaxy in the Virgo cluster, deep Chandra observations illustrate the physics of AGN feedback in hot, gas-rich atmospheres and allow measurements of the age, duration, and power of the outburst from the supermassive black hole in M87 that produced the observed cavities and shocks in the hot X-ray atmosphere.


2012 ◽  
pp. 1-16 ◽  
Author(s):  
P. Jovanovic

Here we present a short overview of the most important results of our investigations of the following galactic and extragalactic gravitational phenomena: supermassive black holes in centers of galaxies and quasars, supermassive black hole binaries, gravitational lenses and dark matter. For the purpose of these investigations, we developed a model of a relativistic accretion disk around a supermassive black hole, based on the ray-tracing method in the Kerr metric, a model of a bright spot in an accretion disk and three different models of gravitational microlenses. All these models enabled us to study physics, spacetime geometry and effects of strong gravity in the vicinity of supermassive black holes, variability of some active galaxies and quasars, different effects in the lensed quasars with multiple images, as well as the dark matter fraction in the Universe. We also found an observational evidence for the first spectroscopically resolved sub-parsec orbit of a supermassive black hole binary system in the core of active galaxy NGC 4151. Besides, we studied applications of one potential alternative to dark matter in the form of a modified theory of gravity on Galactic scales, to explain the recently observed orbital precession of some S-stars, which are orbiting around a massive black hole at the Galactic center.


Author(s):  
N. A. Webb ◽  
D. Cseh ◽  
F. Kirsten

AbstractMany upcoming surveys, particularly in the radio and optical domains, are designed to probe either the temporal and/or the spatial variability of a range of astronomical objects. In the light of these high resolution surveys, we review the subject of ultra-luminous X-ray (ULX) sources, which are thought to be accreting black holes for the most part. We also discuss the sub-class of ULXs known as the hyper-luminous X-ray sources, which may be accreting intermediate mass black holes. We focus on some of the open questions that will be addressed with the new facilities, such as the mass of the black hole in ULXs, their temporal variability and the nature of the state changes, their surrounding nebulae, and the nature of the region in which ULXs reside.


2012 ◽  
Vol 8 (S295) ◽  
pp. 257-260
Author(s):  
Christine Jones ◽  
William Forman ◽  
Akos Bogdan ◽  
Scott Randall ◽  
Ralph Kraft ◽  
...  

AbstractMassive galaxies harbor a supermassive black hole at their centers. At high redshifts, these galaxies experienced a very active quasar phase, when, as their black holes grew by accretion, they produced enormous amounts of energy. At the present epoch, these black holes still undergo occasional outbursts, although the mode of their energy release is primarily mechanical rather than radiative. The energy from these outbursts can reheat the cooling gas in the galaxy cores and maintain the red and dead nature of the early-type galaxies. These outbursts also can have dramatic effects on the galaxy-scale hot coronae found in the more massive galaxies. We describe research in three areas related to the hot gas around galaxies and their supermassive black holes. First we present examples of galaxies with AGN outbursts that have been studied in detail. Second, we show that X-ray emitting low-luminosity AGN are present in 80% of the galaxies studied. Third, we discuss the first examples of extensive hot gas and dark matter halos in optically faint galaxies.


2021 ◽  
Vol 503 (3) ◽  
pp. 3629-3642
Author(s):  
Colin DeGraf ◽  
Debora Sijacki ◽  
Tiziana Di Matteo ◽  
Kelly Holley-Bockelmann ◽  
Greg Snyder ◽  
...  

ABSTRACT With projects such as Laser Interferometer Space Antenna (LISA) and Pulsar Timing Arrays (PTAs) expected to detect gravitational waves from supermassive black hole mergers in the near future, it is key that we understand what we expect those detections to be, and maximize what we can learn from them. To address this, we study the mergers of supermassive black holes in the Illustris simulation, the overall rate of mergers, and the correlation between merging black holes and their host galaxies. We find these mergers occur in typical galaxies along the MBH−M* relation, and that between LISA and PTAs we expect to probe the full range of galaxy masses. As galaxy mergers can trigger star formation, we find that galaxies hosting low-mass black hole mergers tend to show a slight increase in star formation rates compared to a mass-matched sample. However, high-mass merger hosts have typical star formation rates, due to a combination of low gas fractions and powerful active galactic nucleus feedback. Although minor black hole mergers do not correlate with disturbed morphologies, major mergers (especially at high-masses) tend to show morphological evidence of recent galaxy mergers which survive for ∼500 Myr. This is on the same scale as the infall/hardening time of merging black holes, suggesting that electromagnetic follow-ups to gravitational wave signals may not be able to observe this correlation. We further find that incorporating a realistic time-scale delay for the black hole mergers could shift the merger distribution towards higher masses, decreasing the rate of LISA detections while increasing the rate of PTA detections.


Sign in / Sign up

Export Citation Format

Share Document