scholarly journals Gas filaments of the cosmic web located around active galaxies in a protocluster

Science ◽  
2019 ◽  
Vol 366 (6461) ◽  
pp. 97-100 ◽  
Author(s):  
H. Umehata ◽  
M. Fumagalli ◽  
I. Smail ◽  
Y. Matsuda ◽  
A. M. Swinbank ◽  
...  

Cosmological simulations predict that the Universe contains a network of intergalactic gas filaments, within which galaxies form and evolve. However, the faintness of any emission from these filaments has limited tests of this prediction. We report the detection of rest-frame ultraviolet Lyman-α radiation from multiple filaments extending more than one megaparsec between galaxies within the SSA22 protocluster at a redshift of 3.1. Intense star formation and supermassive black-hole activity is occurring within the galaxies embedded in these structures, which are the likely sources of the elevated ionizing radiation powering the observed Lyman-α emission. Our observations map the gas in filamentary structures of the type thought to fuel the growth of galaxies and black holes in massive protoclusters.

2021 ◽  
Vol 503 (3) ◽  
pp. 3629-3642
Author(s):  
Colin DeGraf ◽  
Debora Sijacki ◽  
Tiziana Di Matteo ◽  
Kelly Holley-Bockelmann ◽  
Greg Snyder ◽  
...  

ABSTRACT With projects such as Laser Interferometer Space Antenna (LISA) and Pulsar Timing Arrays (PTAs) expected to detect gravitational waves from supermassive black hole mergers in the near future, it is key that we understand what we expect those detections to be, and maximize what we can learn from them. To address this, we study the mergers of supermassive black holes in the Illustris simulation, the overall rate of mergers, and the correlation between merging black holes and their host galaxies. We find these mergers occur in typical galaxies along the MBH−M* relation, and that between LISA and PTAs we expect to probe the full range of galaxy masses. As galaxy mergers can trigger star formation, we find that galaxies hosting low-mass black hole mergers tend to show a slight increase in star formation rates compared to a mass-matched sample. However, high-mass merger hosts have typical star formation rates, due to a combination of low gas fractions and powerful active galactic nucleus feedback. Although minor black hole mergers do not correlate with disturbed morphologies, major mergers (especially at high-masses) tend to show morphological evidence of recent galaxy mergers which survive for ∼500 Myr. This is on the same scale as the infall/hardening time of merging black holes, suggesting that electromagnetic follow-ups to gravitational wave signals may not be able to observe this correlation. We further find that incorporating a realistic time-scale delay for the black hole mergers could shift the merger distribution towards higher masses, decreasing the rate of LISA detections while increasing the rate of PTA detections.


2015 ◽  
Vol 24 (13) ◽  
pp. 1545005 ◽  
Author(s):  
K. M. Belotsky ◽  
A. A. Kirillov ◽  
S. G. Rubin

Here, we briefly discuss the possibility to solve simultaneously with primordial black holes (PBHs) the problems of dark matter (DM), reionization of the universe, origin of positron line from Galactic center and supermassive black hole (BH) in it. Discussed scenario can naturally lead to a multiple-peak broad-mass-range distribution of PBHs in mass, which is necessary for simultaneous solution of the problems.


Science ◽  
2014 ◽  
Vol 345 (6192) ◽  
pp. 64-68 ◽  
Author(s):  
J. S. Kaastra ◽  
G. A. Kriss ◽  
M. Cappi ◽  
M. Mehdipour ◽  
P.-O. Petrucci ◽  
...  

Supermassive black holes in the nuclei of active galaxies expel large amounts of matter through powerful winds of ionized gas. The archetypal active galaxy NGC 5548 has been studied for decades, and high-resolution x-ray and ultraviolet (UV) observations have previously shown a persistent ionized outflow. An observing campaign in 2013 with six space observatories shows the nucleus to be obscured by a long-lasting, clumpy stream of ionized gas not seen before. It blocks 90% of the soft x-ray emission and causes simultaneous deep, broad UV absorption troughs. The outflow velocities of this gas are up to five times faster than those in the persistent outflow, and, at a distance of only a few light days from the nucleus, it may likely originate from the accretion disk.


2019 ◽  
Vol 79 (11) ◽  
Author(s):  
Javad T. Firouzjaee ◽  
Alireza Allahyari

AbstractWe investigate the effect of the cosmological constant on the angular size of a black hole shadow. It is known that the accelerated expansion which is created by the cosmological constant changes the angular size of the black hole shadow for static observers. However, the shadow size must be calculated for the appropriate cosmological observes. We calculate the angular size of the shadow measured by cosmological comoving observers by projecting the shadow angle to this observer rest frame. We show that the shadow size tends to zero as the observer approaches the cosmological horizon. We estimate the angular size of the shadow for a typical supermassive black hole, e.g M87. It is found that the angular size of the shadow for cosmological observers and static observers is approximately the same at these scales of mass and distance. We present a catalog of supermassive black holes and calculate the effect of the cosmological constant on their shadow size and find that the effect could be $$3\ precent$$3precent for distant sources.


2019 ◽  
Vol 14 (S351) ◽  
pp. 80-83 ◽  
Author(s):  
Melvyn B. Davies ◽  
Abbas Askar ◽  
Ross P. Church

AbstractSupermassive black holes are found in most galactic nuclei. A large fraction of these nuclei also contain a nuclear stellar cluster surrounding the black hole. Here we consider the idea that the nuclear stellar cluster formed first and that the supermassive black hole grew later. In particular we consider the merger of three stellar clusters to form a nuclear stellar cluster, where some of these clusters contain a single intermediate-mass black hole (IMBH). In the cases where multiple clusters contain IMBHs, we discuss whether the black holes are likely to merge and whether such mergers are likely to result in the ejection of the merged black hole from the nuclear stellar cluster. In some cases, no supermassive black hole will form as any merger product is not retained. This is a natural pathway to explain those galactic nuclei that contain a nuclear stellar cluster but apparently lack a supermassive black hole; M33 being a nearby example. Alternatively, if an IMBH merger product is retained within the nuclear stellar cluster, it may subsequently grow, e.g. via the tidal disruption of stars, to form a supermassive black hole.


1998 ◽  
Vol 11 (1) ◽  
pp. 28-41
Author(s):  
I.D. Novikov

Some 30 years ago very few scientists thought that black holes may really exist. Attention focussed on the black hole hypothesis after neutron stars had been discovered. It was rather surprising that astrophysicists immediately ‘welcomed’ black holes. They found their place not only in the remnants of supernova explosions but also in the nuclei of galaxies and quasars.


2015 ◽  
Vol 2015 ◽  
pp. 1-5
Author(s):  
David Garofalo

While the basic laws of physics seem time-reversal invariant, our understanding of the apparent irreversibility of the macroscopic world is well grounded in the notion of entropy. Because astrophysics deals with the largest structures in the Universe, one expects evidence there for the most pronounced entropic arrow of time. However, in recent theoretical astrophysics work it appears possible to identify constructs with time-reversal symmetry, which is puzzling in the large-scale realm especially because it involves the engines of powerful outflows in active galactic nuclei which deal with macroscopic constituents such as accretion disks, magnetic fields, and black holes. Nonetheless, the underlying theoretical structure from which this accreting black hole framework emerges displays a time-symmetric harmonic behavior, a feature reminiscent of basic and simple laws of physics. While we may expect such behavior for classical black holes due to their simplicity, manifestations of such symmetry on the scale of galaxies, instead, surprise. In fact, we identify a parallel between the astrophysical tug-of-war between accretion disks and jets in this model and the time symmetry-breaking of a simple overdamped harmonic oscillator. The validity of these theoretical ideas in combination with this unexpected parallel suggests that black holes are more influential in astrophysics than currently recognized and that black hole astrophysics is a more fundamental discipline.


2020 ◽  
Vol 35 (02n03) ◽  
pp. 2040054
Author(s):  
M. Yu. Piotrovich ◽  
V. L. Afanasiev ◽  
S. D. Buliga ◽  
T. M. Natsvlishvili

Based on spectropolarimetry for a number of active galactic nuclei in Seyfert 1 type galaxies observed with the 6-m BTA telescope, we have estimated the spins of the supermassive black holes at the centers of these galaxies. We have determined the spins based on the standard Shakura-Sunyaev accretion disk model. More than 70% of the investigated active galactic nuclei are shown to have Kerr supermassive black holes with a dimensionless spin greater than 0.9.


Daedalus ◽  
2014 ◽  
Vol 143 (4) ◽  
pp. 103-113 ◽  
Author(s):  
Scott Tremaine

Quasars emit more energy than any other object in the universe, yet are not much bigger than our solar system. Quasars are powered by giant black holes of up to ten billion (1010) times the mass of the sun. Their enormous luminosities are the result of frictional forces acting upon matter as it spirals toward the black hole, heating the gas until it glows. We also believe that black holes of one million to ten billion solar masses – dead quasars – are present at the centers of most galaxies, including our own. The mass of the central black hole appears to be closely related to other properties of its host galaxy, such as the total mass in stars, but the origin of this relation and the role that black holes play in the formation of galaxies are still mysteries.


2009 ◽  
Vol 5 (S267) ◽  
pp. 231-238
Author(s):  
Marcella Brusa

AbstractOver the last few years, the existence of mutual feedback effects between accreting supermassive black holes powering AGN and star formation in their host galaxies has become evident. This means that the formation and the evolution of AGN and galaxies should be considered as one and the same problem. As a consequence, the search for, and the characterization of the evolutionary and physical properties of AGN over a large redshift interval is a key topic of present research in the field of observational cosmology. Significant advances have been obtained in the last ten years thanks to the sizable number of XMM–Newton and Chandra surveys, complemented by multiwavelength follow-up programs. I will present some of the recent results and the ongoing efforts (mostly from the COSMOS and CDFS surveys) aimed at obtaining a complete census of accreting black holes in the universe, and a characterization of the properties of the host galaxies.


Sign in / Sign up

Export Citation Format

Share Document