scholarly journals Axisymmetric equilibrium models for magnetized neutron stars in General Relativity under the Conformally Flat Condition

2014 ◽  
Vol 439 (4) ◽  
pp. 3541-3563 ◽  
Author(s):  
A. G. Pili ◽  
N. Bucciantini ◽  
L. Del Zanna
2020 ◽  
Vol 640 ◽  
pp. A44 ◽  
Author(s):  
J. Soldateschi ◽  
N. Bucciantini ◽  
L. Del Zanna

Among the possible extensions of general relativity that have been put forward to address some long-standing issues in our understanding of the Universe, scalar-tensor theories have received a lot of attention for their simplicity. Interestingly, some of these predict a potentially observable non-linear phenomenon, known as spontaneous scalarisation, in the presence of highly compact matter distributions, as in the case of neutron stars. Neutron stars are ideal laboratories for investigating the properties of matter under extreme conditions and, in particular, they are known to harbour the strongest magnetic fields in the Universe. Here, for the first time, we present a detailed study of magnetised neutron stars in scalar-tensor theories. First, we showed that the formalism developed for the study of magnetised neutron stars in general relativity, based on the “extended conformally flat condition”, can easily be extended in the presence of a non-minimally coupled scalar field, retaining many of its numerical advantages. We then carried out a study of the parameter space considering the two extreme geometries of purely toroidal and purely poloidal magnetic fields, varying both the strength of the magnetic field and the intensity of scalarisation. We compared our results with magnetised general-relativistic solutions and un-magnetised scalarised solutions, showing how the mutual interplay between magnetic and scalar fields affect the magnetic and the scalarisation properties of neutron stars. In particular, we focus our discussion on magnetic deformability, maximum mass, and range of scalarisation.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
In-Saeng Suh ◽  
Grant J. Mathews ◽  
J. Reese Haywood ◽  
N. Q. Lan

The spatially conformally flat approximation (CFA) is a viable method to deduce initial conditions for the subsequent evolution of binary neutron stars employing the full Einstein equations. Here we analyze the viability of the CFA for the general relativistic hydrodynamic initial conditions of binary neutron stars. We illustrate the stability of the conformally flat condition on the hydrodynamics by numerically evolving ~100 quasicircular orbits. We illustrate the use of this approximation for orbiting neutron stars in the quasicircular orbit approximation to demonstrate the equation of state dependence of these initial conditions and how they might affect the emergent gravitational wave frequency as the stars approach the innermost stable circular orbit.


2020 ◽  
Vol 29 (14) ◽  
pp. 2043028
Author(s):  
M. Ángeles Pérez-García ◽  
Joseph Silk

Neutron Stars (NSs) are compact stellar objects that are stable solutions in General Relativity. Their internal structure is usually described using an equation of state that involves the presence of ordinary matter and its interactions. However there is now a large consensus that an elusive sector of matter in the universe, described as dark matter, remains as yet undiscovered. In such a case, NSs should contain both, baryonic and dark matter. We argue that depending on the nature of the dark matter and in certain circumstances, the two matter components would form a mixture inside NSs that could trigger further changes, some of them observable. The very existence of NSs constrains the nature and interactions of dark matter in the universe.


Author(s):  
Nils Andersson

This chapter introduces the different classes of compact objects—white dwarfs, neutron stars, and black holes—that are relevant for gravitational-wave astronomy. The ideas are placed in the context of developing an understanding of the likely endpoint(s) of stellar evolution. Key ideas like Fermi gases and the Chandrasekhar mass are discussed, as is the emergence of general relativity as a cornerstone of astrophysics in the 1950s. Issues associated with different formation channels for, in particular, black holes are considered. The chapter ends with a discussion of the supermassive black holes that are found at the centre of galaxies.


2018 ◽  
Vol 27 (07) ◽  
pp. 1850063 ◽  
Author(s):  
M. Sharif ◽  
Sobia Sadiq

This paper is aimed to study the modeling of spherically symmetric spacetime in the presence of anisotropic dissipative fluid configuration. This is accomplished for an observer moving relative to matter content using two cases of polytropic equation-of-state under conformally flat condition. We formulate the corresponding generalized Tolman–Oppenheimer–Volkoff equation, mass equation, as well as energy conditions for both cases. The conformally flat condition is imposed to find an expression for anisotropy which helps to study spherically symmetric polytropes. Finally, Tolman mass is used to analyze stability of the resulting models.


Sign in / Sign up

Export Citation Format

Share Document