scholarly journals Is the escape velocity in star clusters linked to extended star formation histories? Using NGC 7252: W3 as a test case

2016 ◽  
Vol 457 (1) ◽  
pp. 809-821 ◽  
Author(s):  
I. Cabrera-Ziri ◽  
N. Bastian ◽  
M. Hilker ◽  
B. Davies ◽  
F. Schweizer ◽  
...  
1999 ◽  
Vol 193 ◽  
pp. 517-522
Author(s):  
Kelsey E. Johnson

In an effort to better understand how the properties of star formation in starburst galaxies depend on various environmental parameters, I present a comparison between two well-known WR galaxies: the interacting galaxy system NGC 1741 in the Hickson Compact Group 31, and the dwarf galaxy He2-10. The high spatial resolution of HST has allowed identification of a large number of starburst knots, or ‘super star clusters’ in these WR galaxies. Broad-band photometry and the latest stellar synthesis models are used to estimate the ages and masses of the super star clusters. The properties of the clusters are then used to compare and contrast the overall star-formation histories in the two WR galaxies.


2012 ◽  
Vol 10 (H16) ◽  
pp. 275-277
Author(s):  
Kim A. Venn

It seems that in the past decade, there have been two paradigm shifts regarding star clusters. Firstly, the observational evidence for multiple stellar populations requires more extended and often complex star formation histories in star clusters. Secondly, theoretical models that form globular clusters in dwarf galaxies that are accreted at very early epochs (z > 5) are able to reproduce the age-metallicity relations observed. For the accretion scenario to be viable, globular clusters should also resemble the chemistry of at least some dwarf galaxies.


2018 ◽  
Vol 480 (2) ◽  
pp. 1973-1998 ◽  
Author(s):  
Nikolay Kacharov ◽  
Nadine Neumayer ◽  
Anil C Seth ◽  
Michele Cappellari ◽  
Richard McDermid ◽  
...  

2009 ◽  
Vol 5 (S266) ◽  
pp. 433-437
Author(s):  
I. S. Konstantopoulos ◽  
N. Bastian ◽  
M. Gieles ◽  
H. J. G. L. M. Lamers

AbstractStar clusters are found in all sorts of environments, and their formation and evolution is inextricably linked to the star-formation process. Their eventual destruction can result from a number of factors at different times, but the process can be investigated as a whole through the study of cluster age distributions. Observations of populous cluster samples reveal a distribution following a power law of index approximately −1. In this work, we use M33 as a test case to examine the age distribution of an archetypal cluster population and show that it is, in fact, the evolving shape of the mass detection limit that defines this trend. That is to say, any magnitude-limited sample will appear to follow a dN/dτ = τ−1 relation, while cutting the sample according to mass gives rise to a composite structure, perhaps implying a dependence of the cluster disruption process on mass. In the context of this framework, we examine different models of cluster disruption from both theoretical and observational perspectives.


2020 ◽  
Vol 501 (2) ◽  
pp. 1803-1822
Author(s):  
Seunghwan Lim ◽  
Douglas Scott ◽  
Arif Babul ◽  
David J Barnes ◽  
Scott T Kay ◽  
...  

ABSTRACT As progenitors of the most massive objects, protoclusters are key to tracing the evolution and star formation history of the Universe, and are responsible for ${\gtrsim }\, 20$ per cent of the cosmic star formation at $z\, {\gt }\, 2$. Using a combination of state-of-the-art hydrodynamical simulations and empirical models, we show that current galaxy formation models do not produce enough star formation in protoclusters to match observations. We find that the star formation rates (SFRs) predicted from the models are an order of magnitude lower than what is seen in observations, despite the relatively good agreement found for their mass-accretion histories, specifically that they lie on an evolutionary path to become Coma-like clusters at $z\, {\simeq }\, 0$. Using a well-studied protocluster core at $z\, {=}\, 4.3$ as a test case, we find that star formation efficiency of protocluster galaxies is higher than predicted by the models. We show that a large part of the discrepancy can be attributed to a dependence of SFR on the numerical resolution of the simulations, with a roughly factor of 3 drop in SFR when the spatial resolution decreases by a factor of 4. We also present predictions up to $z\, {\simeq }\, 7$. Compared to lower redshifts, we find that centrals (the most massive member galaxies) are more distinct from the other galaxies, while protocluster galaxies are less distinct from field galaxies. All these results suggest that, as a rare and extreme population at high z, protoclusters can help constrain galaxy formation models tuned to match the average population at $z\, {\simeq }\, 0$.


2020 ◽  
Vol 500 (3) ◽  
pp. 3240-3253
Author(s):  
Amanda R Lopes ◽  
Eduardo Telles ◽  
Jorge Melnick

ABSTRACT We discuss the implications of assuming different star formation histories (SFH) in the relation between star formation rate (SFR) and mass derived by the spectral energy distribution fitting (SED). Our analysis focuses on a sample of H ii galaxies, dwarf starburst galaxies spectroscopically selected through their strong narrow emission lines in SDSS DR13 at z < 0.4, cross-matched with photometric catalogues from GALEX, SDSS, UKIDSS, and WISE. We modelled and fitted the SEDs with the code CIGALE adopting different descriptions of SFH. By adding information from different independent studies, we find that H ii galaxies are best described by episodic SFHs including an old (10 Gyr), an intermediate age (100−1000 Myr) and a recent population with ages < 10 Myr. H ii galaxies agree with the SFR−M* relation from local star-forming galaxies, and only lie above such relation when the current SFR is adopted as opposed to the average over the entire SFH. The SFR−M* demonstrated not to be a good tool to provide additional information about the SFH of H ii galaxies, as different SFH present a similar behaviour with a spread of <0.1 dex.


2021 ◽  
Vol 503 (3) ◽  
pp. 3309-3325
Author(s):  
Sabine Bellstedt ◽  
Aaron S G Robotham ◽  
Simon P Driver ◽  
Jessica E Thorne ◽  
Luke J M Davies ◽  
...  

ABSTRACT We analyse the metallicity histories of ∼4500 galaxies from the GAMA survey at z < 0.06 modelled by the SED-fitting code ProSpect using an evolving metallicity implementation. These metallicity histories, in combination with the associated star formation histories, allow us to analyse the inferred gas-phase mass–metallicity relation. Furthermore, we extract the mass–metallicity relation at a sequence of epochs in cosmic history, to track the evolving mass–metallicity relation with time. Through comparison with observations of gas-phase metallicity over a large range of redshifts, we show that, remarkably, our forensic SED analysis has produced an evolving mass–metallicity relationship that is consistent with observations at all epochs. We additionally analyse the three-dimensional mass–metallicity–SFR space, showing that galaxies occupy a clearly defined plane. This plane is shown to be subtly evolving, displaying an increased tilt with time caused by general enrichment, and also the slowing down of star formation with cosmic time. This evolution is most apparent at lookback times greater than 7 Gyr. The trends in metallicity recovered in this work highlight that the evolving metallicity implementation used within the SED-fitting code ProSpect produces reasonable metallicity results over the history of a galaxy. This is expected to provide a significant improvement to the accuracy of the SED-fitting outputs.


Sign in / Sign up

Export Citation Format

Share Document