scholarly journals The impact of cosmic variance on simulating weak lensing surveys

2015 ◽  
Vol 449 (4) ◽  
pp. 3597-3612 ◽  
Author(s):  
Arun Kannawadi ◽  
Rachel Mandelbaum ◽  
Claire Lackner
Keyword(s):  
Author(s):  
E Gaztanaga ◽  
S J Schmidt ◽  
M D Schneider ◽  
J A Tyson

Abstract We test the impact of some systematic errors in weak lensing magnification measurements with the COSMOS 30-band photo-z Survey flux limited to Iauto < 25.0 using correlations of both source galaxy counts and magnitudes. Systematic obscuration effects are measured by comparing counts and magnification correlations. We use the ACS-HST catalogs to identify potential blending objects (close pairs) and perform the magnification analyses with and without blended objects. We find that blending effects start to be important (∼ 0.04 mag obscuration) at angular scales smaller than 0.1 arcmin. Extinction and other systematic obscuration effects can be as large as 0.10 mag (U-band) but are typically smaller than 0.02 mag depending on the band. After applying these corrections, we measure a 3.9σ magnification signal that is consistent for both counts and magnitudes. The corresponding projected mass profiles of galaxies at redshift z ≃ 0.6 (MI ≃ −21) is Σ = 25 ± 6M⊙h3/pc2 at 0.1 Mpc/h, consistent with NFW type profile with M200 ≃ 2 × 1012M⊙h/pc2. Tangential shear and flux-size magnification over the same lenses show similar mass profiles. We conclude that magnification from counts and fluxes using photometric redshifts has the potential to provide complementary weak lensing information in future wide field surveys once we carefully take into account systematic effects, such as obscuration and blending.


Author(s):  
S Grandis ◽  
J J Mohr ◽  
J P Dietrich ◽  
S Bocquet ◽  
A Saro ◽  
...  

Abstract We forecast the impact of weak lensing (WL) cluster mass calibration on the cosmological constraints from the X-ray selected galaxy cluster counts in the upcoming eROSITA survey. We employ a prototype cosmology pipeline to analyze mock cluster catalogs. Each cluster is sampled from the mass function in a fiducial cosmology and given an eROSITA count rate and redshift, where count rates are modeled using the eROSITA effective area, a typical exposure time, Poisson noise and the scatter and form of the observed X-ray luminosity– and temperature–mass–redshift relations. A subset of clusters have mock shear profiles to mimic either those from DES and HSC or from the future Euclid and LSST surveys. Using a count rate selection, we generate a baseline cluster cosmology catalog that contains 13k clusters over 14,892 deg2 of extragalactic sky. Low mass groups are excluded using raised count rate thresholds at low redshift. Forecast parameter uncertainties for ΩM, σ8 and w are 0.023 (0.016; 0.014), 0.017 (0.012; 0.010), and 0.085 (0.074; 0.071), respectively, when adopting DES+HSC WL (Euclid; LSST), while marginalizing over the sum of the neutrino masses. A degeneracy between the distance–redshift relation and the parameters of the observable–mass scaling relation limits the impact of the WL calibration on the w constraints, but with BAO measurements from DESI an improved determination of w to 0.043 becomes possible. With Planck CMB priors, ΩM (σ8) can be determined to 0.005 (0.007), and the summed neutrino mass limited to ∑mν < 0.241 eV (at 95%). If systematics on the group mass scale can be controlled, the eROSITA group and cluster sample with 43k objects and LSST WL could constrain ΩM and σ8 to 0.007 and w to 0.050.


2017 ◽  
Vol 475 (4) ◽  
pp. 4524-4543 ◽  
Author(s):  
S Samuroff ◽  
S L Bridle ◽  
J Zuntz ◽  
M A Troxel ◽  
D Gruen ◽  
...  

2020 ◽  
Vol 643 ◽  
pp. A70 ◽  
Author(s):  
I. Tutusaus ◽  
M. Martinelli ◽  
V. F. Cardone ◽  
S. Camera ◽  
S. Yahia-Cherif ◽  
...  

Context. The data from the Euclid mission will enable the measurement of the angular positions and weak lensing shapes of over a billion galaxies, with their photometric redshifts obtained together with ground-based observations. This large dataset, with well-controlled systematic effects, will allow for cosmological analyses using the angular clustering of galaxies (GCph) and cosmic shear (WL). For Euclid, these two cosmological probes will not be independent because they will probe the same volume of the Universe. The cross-correlation (XC) between these probes can tighten constraints and is therefore important to quantify their impact for Euclid. Aims. In this study, we therefore extend the recently published Euclid forecasts by carefully quantifying the impact of XC not only on the final parameter constraints for different cosmological models, but also on the nuisance parameters. In particular, we aim to decipher the amount of additional information that XC can provide for parameters encoding systematic effects, such as galaxy bias, intrinsic alignments (IAs), and knowledge of the redshift distributions. Methods. We follow the Fisher matrix formalism and make use of previously validated codes. We also investigate a different galaxy bias model, which was obtained from the Flagship simulation, and additional photometric-redshift uncertainties; we also elucidate the impact of including the XC terms on constraining these latter. Results. Starting with a baseline model, we show that the XC terms reduce the uncertainties on galaxy bias by ∼17% and the uncertainties on IA by a factor of about four. The XC terms also help in constraining the γ parameter for minimal modified gravity models. Concerning galaxy bias, we observe that the role of the XC terms on the final parameter constraints is qualitatively the same irrespective of the specific galaxy-bias model used. For IA, we show that the XC terms can help in distinguishing between different models, and that if IA terms are neglected then this can lead to significant biases on the cosmological parameters. Finally, we show that the XC terms can lead to a better determination of the mean of the photometric galaxy distributions. Conclusions. We find that the XC between GCph and WL within the Euclid survey is necessary to extract the full information content from the data in future analyses. These terms help in better constraining the cosmological model, and also lead to a better understanding of the systematic effects that contaminate these probes. Furthermore, we find that XC significantly helps in constraining the mean of the photometric-redshift distributions, but, at the same time, it requires more precise knowledge of this mean with respect to single probes in order not to degrade the final “figure of merit”.


2019 ◽  
Vol 490 (2) ◽  
pp. 2606-2626 ◽  
Author(s):  
Hao-Yi Wu ◽  
David H Weinberg ◽  
Andrés N Salcedo ◽  
Benjamin D Wibking ◽  
Ying Zu

ABSTRACT Next-generation optical imaging surveys will revolutionize the observations of weak gravitational lensing by galaxy clusters and provide stringent constraints on growth of structure and cosmic acceleration. In these experiments, accurate modelling of covariance matrices of cluster weak lensing plays the key role in obtaining robust measurements of the mean mass of clusters and cosmological parameters. We use a combination of analytical calculations and high-resolution N-body simulations to derive accurate covariance matrices that span from the virial regime to linear scales of the cluster-matter cross-correlation. We validate this calculation using a public ray-tracing lensing simulation and provide a software package for calculating covariance matrices for a wide range of cluster and source sample choices. We discuss the relative importance of shape noise and density fluctuations, the impact of radial bin size, and the impact of off-diagonal elements. For a weak lensing source density ns = 10 arcmin−2, shape noise typically dominates the variance on comoving scales $r_{\rm p}\lesssim 5\ h^{-1} \, \rm Mpc$. However, for ns = 60 arcmin−2, potentially achievable with future weak lensing experiments, density fluctuations typically dominate the variance at $r_{\rm p}\gtrsim 1\ h^{-1} \, \rm Mpc$ and remain comparable to shape noise on smaller scales.


2020 ◽  
Vol 636 ◽  
pp. A78 ◽  
Author(s):  
M. A. Schmitz ◽  
J.-L. Starck ◽  
F. Ngole Mboula ◽  
N. Auricchio ◽  
J. Brinchmann ◽  
...  

Context. Future weak lensing surveys, such as the Euclid mission, will attempt to measure the shapes of billions of galaxies in order to derive cosmological information. These surveys will attain very low levels of statistical error, and systematic errors must be extremely well controlled. In particular, the point spread function (PSF) must be estimated using stars in the field, and recovered with high accuracy. Aims. The aims of this paper are twofold. Firstly, we took steps toward a nonparametric method to address the issue of recovering the PSF field, namely that of finding the correct PSF at the position of any galaxy in the field, applicable to Euclid. Our approach relies solely on the data, as opposed to parametric methods that make use of our knowledge of the instrument. Secondly, we studied the impact of imperfect PSF models on the shape measurement of galaxies themselves, and whether common assumptions about this impact hold true in an Euclid scenario. Methods. We extended the recently proposed resolved components analysis approach, which performs super-resolution on a field of under-sampled observations of a spatially varying, image-valued function. We added a spatial interpolation component to the method, making it a true 2-dimensional PSF model. We compared our approach to PSFEx, then quantified the impact of PSF recovery errors on galaxy shape measurements through image simulations. Results. Our approach yields an improvement over PSFEx in terms of the PSF model and on observed galaxy shape errors, though it is at present far from reaching the required Euclid accuracy. We also find that the usual formalism used for the propagation of PSF model errors to weak lensing quantities no longer holds in the case of an Euclid-like PSF. In particular, different shape measurement approaches can react differently to the same PSF modeling errors.


Author(s):  
Catherine Heymans ◽  
Barnaby Rowe ◽  
Henk Hoekstra ◽  
Lance Miller ◽  
Thomas Erben ◽  
...  

2007 ◽  
Vol 3 (S244) ◽  
pp. 374-375
Author(s):  
Leila C. Powell ◽  
Scott T. Kay ◽  
Arif Babul ◽  
Andisheh Mahdavi

AbstractVarious differences in galaxy cluster properties derived from X-ray and weak lensing observations have been highlighted in the literature. One such difference is the observation of mass concentrations in lensing maps which have no X-ray counterparts (e.g. Jee, White, Ford et al. 2005). We investigate this issue by identifying substructures in maps of projected total mass (analogous to weak lensing mass reconstructions) and maps of projected X-ray surface brightness for three simulated clusters. We then compare the 2D mass substructures with both 3D subhalo data and the 2D X-ray substructures. Here we present preliminary results from the first comparison, where we have assessed the impact of projecting the data on subhalo identification.


2020 ◽  
Vol 493 (2) ◽  
pp. 1640-1661 ◽  
Author(s):  
David Copeland ◽  
Andy Taylor ◽  
Alex Hall

ABSTRACT The capacity of Stage IV lensing surveys to measure the neutrino mass sum and differentiate between the normal and inverted mass hierarchies depends on the impact of nuisance parameters describing small-scale baryonic astrophysics and intrinsic alignments. For a Euclid-like survey, we perform the first combined weak lensing and galaxy clustering Fisher analysis with baryons, intrinsic alignments, and massive neutrinos for both hierarchies. We use a matter power spectrum generated from a halo model that captures the impact of baryonic feedback and adiabatic contraction. For weak lensing, we find that baryons cause severe degradation to forecasts of the neutrino mass sum, Σ, approximately doubling σΣ. We show that including galaxy clustering constraints from Euclid and BOSS, and cosmic microwave background (CMB) Planck priors, can reduce this degradation to σΣ to 9 per cent and 16 per cent for the normal and inverted hierarchies, respectively. The combined forecasts, $\sigma _{\Sigma _{\rm {NH}}}=0.034\, \rm {eV}$ and $\sigma _{\Sigma _{\rm {IH}}}=0.034\, \rm {eV}$, preclude a meaningful distinction of the hierarchies but could be improved upon with future CMB priors on ns and information from neutrinoless double beta decay to achieve a 2σ distinction. The effect of intrinsic alignments on forecasts is shown to be minimal, with σΣ even experiencing mild improvements due to information from the intrinsic alignment signal. We find that while adiabatic contraction and intrinsic alignments will require careful calibration to prevent significant biasing of Σ, there is less risk presented by feedback from energetic events like AGN and supernovae.


Sign in / Sign up

Export Citation Format

Share Document