scholarly journals Atomic and molecular gas in IllustrisTNG galaxies at low redshift

2019 ◽  
Vol 487 (2) ◽  
pp. 1529-1550 ◽  
Author(s):  
Benedikt Diemer ◽  
Adam R H Stevens ◽  
Claudia del P Lagos ◽  
A R Calette ◽  
Sandro Tacchella ◽  
...  

ABSTRACT We have recently developed a post-processing framework to estimate the abundance of atomic and molecular hydrogen (H i and H2, respectively) in galaxies in large-volume cosmological simulations. Here we compare the H i and H2 content of IllustrisTNG galaxies to observations. We mostly restrict this comparison to z ≈ 0 and consider six observational metrics: the overall abundance of H i and H2, their mass functions, gas fractions as a function of stellar mass, the correlation between H2 and star formation rate, the spatial distribution of gas, and the correlation between gas content and morphology. We find generally good agreement between simulations and observations, particularly for the gas fractions and the H i mass–size relation. The H2 mass correlates with star formation rate as expected, revealing an almost constant depletion time that evolves up to z = 2 as observed. However, we also discover a number of tensions with varying degrees of significance, including an overestimate of the total neutral gas abundance at z = 0 by about a factor of 2 and a possible excess of satellites with no or very little neutral gas. These conclusions are robust to the modelling of the H i/H2 transition. In terms of their neutral gas properties, the IllustrisTNG simulations represent an enormous improvement over the original Illustris run. All data used in this paper are publicly available as part of the IllustrisTNG data release.

Author(s):  
P Bonfini ◽  
A Zezas ◽  
M L N Ashby ◽  
S P Willner ◽  
A Maragkoudakis ◽  
...  

Abstract We constrain the mass distribution in nearby, star-forming galaxies with the Star Formation Reference Survey (SFRS), a galaxy sample constructed to be representative of all known combinations of star formation rate (SFR), dust temperature, and specific star formation rate (sSFR) that exist in the Local Universe. An innovative two-dimensional bulge/disk decomposition of the 2MASS/Ks-band images of the SFRS galaxies yields global luminosity and stellar mass functions, along with separate mass functions for their bulges and disks. These accurate mass functions cover the full range from dwarf galaxies to large spirals, and are representative of star-forming galaxies selected based on their infra-red luminosity, unbiased by AGN content and environment. We measure an integrated luminosity density j = 1.72 ± 0.93 × 109 L⊙  h−1 Mpc−3 and a total stellar mass density ρM = 4.61 ± 2.40 × 108 M⊙  h−1 Mpc−3. While the stellar mass of the average star-forming galaxy is equally distributed between its sub-components, disks globally dominate the mass density budget by a ratio 4:1 with respect to bulges. In particular, our functions suggest that recent star formation happened primarily in massive systems, where they have yielded a disk stellar mass density larger than that of bulges by more than 1 dex. Our results constitute a reference benchmark for models addressing the assembly of stellar mass on the bulges and disks of local (z = 0) star-forming galaxies.


2020 ◽  
Vol 493 (2) ◽  
pp. 1982-1995 ◽  
Author(s):  
Steven Janowiecki ◽  
Barbara Catinella ◽  
Luca Cortese ◽  
Amelie Saintonge ◽  
Jing Wang

ABSTRACT We use H i and H2 global gas measurements of galaxies from xGASS and xCOLD GASS to investigate quenching paths of galaxies below the Star forming main sequence (SFMS). We show that the population of galaxies below the SFMS is not a 1:1 match with the population of galaxies below the H i and H2 gas fraction scaling relations. Some galaxies in the transition zone (TZ) 1σ below the SFMS can be as H i-rich as those in the SFMS, and have on average longer gas depletion time-scales. We find evidence for environmental quenching of satellites, but central galaxies in the TZ defy simple quenching pathways. Some of these so-called ‘quenched’ galaxies may still have significant gas reservoirs and be unlikely to deplete them any time soon. As such, a correct model of galaxy quenching cannot be inferred with star formation rate (or other optical observables) alone, but must include observations of the cold gas. We also find that internal structure (particularly, the spatial distribution of old and young stellar populations) plays a significant role in regulating the star formation of gas-rich isolated TZ galaxies, suggesting the importance of bulges in their evolution.


2015 ◽  
Vol 449 (4) ◽  
pp. 3719-3740 ◽  
Author(s):  
Jillian M. Scudder ◽  
Sara L. Ellison ◽  
Emmanuel Momjian ◽  
Jessica L. Rosenberg ◽  
Paul Torrey ◽  
...  

2019 ◽  
Vol 486 (1) ◽  
pp. L26-L30 ◽  
Author(s):  
Mohammadtaher Safarzadeh ◽  
Abraham Loeb

ABSTRACT We study the recently observed JellyFish galaxies (JFGs), which are found to have their gas content ram pressure stripped away in galaxy clusters. These galaxies are observed to have an enhanced star formation rate of about 0.2 dex compared with a control sample of the same stellar mass in their discs. We model the increase in the star formation efficiency as a function of intracluster medium pressure and parametrize the cold gas content of the galaxies as a function of cluster-centric distance. We show that regarding the external pressure as a positive feedback results in agreement with the observed distribution of enhanced star formation in the JFGs if clouds are shielded from evaporation by magnetic fields. Our results predict that satellites with halo mass $\lt 10^{11}{\rm \, M_\odot }$ moving with Mach numbers $\mathcal {M}\approx 2$, and inclination angles below 60 deg, are more likely to be detected as JFGs.


2020 ◽  
Vol 496 (2) ◽  
pp. 1620-1637 ◽  
Author(s):  
Matthew E Orr ◽  
Christopher C Hayward ◽  
Anne M Medling ◽  
Alexander B Gurvich ◽  
Philip F Hopkins ◽  
...  

ABSTRACT We study the spatially resolved (sub-kpc) gas velocity dispersion (σ)–star formation rate (SFR) relation in the FIRE-2 (Feedback in Realistic Environments) cosmological simulations. We specifically focus on Milky Way-mass disc galaxies at late times (z ≈ 0). In agreement with observations, we find a relatively flat relationship, with σ ≈ 15–30 km s−1 in neutral gas across 3 dex in SFRs. We show that higher dense gas fractions (ratios of dense gas to neutral gas) and SFRs are correlated at constant σ. Similarly, lower gas fractions (ratios of gas to stellar mass) are correlated with higher σ at constant SFR. The limits of the σ–ΣSFR relation correspond to the onset of strong outflows. We see evidence of ‘on-off’ cycles of star formation in the simulations, corresponding to feedback injection time-scales of 10–100 Myr, where SFRs oscillate about equilibrium SFR predictions. Finally, SFRs and velocity dispersions in the simulations agree well with feedback-regulated and marginally stable gas disc (Toomre’s Q = 1) model predictions, and the simulation data effectively rule out models assuming that gas turns into stars at (low) constant efficiency (i.e. 1 per cent per free-fall time). And although the simulation data do not entirely exclude gas accretion/gravitationally powered turbulence as a driver of σ, it appears to be subdominant to stellar feedback in the simulated galaxy discs at z ≈ 0.


2018 ◽  
Vol 617 ◽  
pp. A33 ◽  
Author(s):  
P. Andreani ◽  
A. Boselli ◽  
L. Ciesla ◽  
R. Vio ◽  
L. Cortese ◽  
...  

Aims.We discuss the results of the relationships between theK-band and stellar mass, FIR luminosities, star formation rate, and the masses of the dust and gas of nearby galaxies computing the bivariateK-band-luminosity function (BLF) and bivariateK-band-mass function (BMF) of theHerschelReference Survey (HRS), a volume-limited sample with full wavelength coverage.Methods.We derive the BLFs and BMFs from theK-band and stellar mass, FIR luminosities, star formation rate, dust and gas masses cumulative distributions using a copula method, which is outlined in detail. The use of the computed bivariate taking into account the upper limits allows us to derive a more solid statistical ground for the relationship between the observed physical quantities.Results.The analysis shows that the behaviour of the morphological (optically selected) subsamples is quite different. A statistically meaningful result can be obtained over the whole HRS sample only from the relationship between theK-band and the stellar mass, while for the remaining physical quantities (dust and gas masses, far-infrared luminosity, and star formation rate), the analysis is distinct for late-type (LT) and early-type galaxies (ETG). However, the number of ETGs is small to perform a robust statistical analysis, and in most of the case results are discussed only for the LTG subsample. The luminosity and mass functions (LFs, MFs) of LTGs are generally dependent on theK-band and the various dependencies are discussed in detail. We are able to derive the corresponding LFs and MFs and compare them with those computed with other samples. Our statistical analysis allows us to characterise the HRS which, although non-homogeneously selected and partially biased towards low IR luminosities, may be considered as representative of the local LT galaxy population.


2019 ◽  
Vol 625 ◽  
pp. A148
Author(s):  
Julien Dassa-Terrier ◽  
Anne-Laure Melchior ◽  
Françoise Combes

We analysed molecular observations performed at IRAM interferometer in CO(1-0) of the circum-nuclear region (within 250 pc) of Andromeda with 2.9″ = 11 pc resolution. We detected 12 molecular clumps in this region, corresponding to a total molecular mass of (8.4 ± 0.4)×104 M⊙. These clumps follow Larson’s mass-size relation, but lie well above the velocity-size relation. We discuss the possibility that these clumps are probably not virialised, but are transient agglomerations of smaller entities that might be virialised. Three of these clumps have been detected in CO(2-1) in a previous work, and we find a temperature line ratio below 0.5 in this work. With a radiative transfer analysis, we show that this gas is in non-local thermal equilibrium with a low excitation temperature (Tex = 5 − 9 K). We find a surface beam filling factor of order 5% and a gas density in the range 60 − 650 cm−3, which is well below the critical density. With a gas-to-stellar mass fraction of 4 × 10−4 and dust-to-gas ratio of 0.01, this quiescent region has exhausted its gas budget. Its spectral energy distribution is compatible with passive templates assembled from elliptical galaxies. While weak dust emission is present in the region, we show that no star formation is present and support the previous results that the dust is heated by the old and intermediate stellar population. We study the possibility that this region lies formally in the low-density part of the Kennicutt-Schmidt law in a regime where the star formation rate estimators are not completely reliable. We confirm the quiescence of the inner part of this galaxy known to lie on the green valley.


2014 ◽  
Vol 562 ◽  
pp. A1 ◽  
Author(s):  
V. Perret ◽  
F. Renaud ◽  
B. Epinat ◽  
P. Amram ◽  
F. Bournaud ◽  
...  

2007 ◽  
Vol 3 (S245) ◽  
pp. 415-416
Author(s):  
T. Dwelly ◽  
N. Seymour ◽  
I. M. McHardy ◽  
D. Moss ◽  
M. Page ◽  
...  

There is now good agreement between the various methods of estimating the space density of the star-formation rate (SFRD) at low redshifts (z < 1), with uncertainties around 30–50%. However, the situation at higher redshifts remains much less clear, with uncertainties in the SFRD, due to e.g. poorly known dust absorption corrections, of as much as 300–500%. Radio emission from star-forming galaxies is unaffected by absorption and scales linearly with star-formation rate, thus the radio luminosity of star-forming galaxies provides an excellent independent, unbiased measure of their star-formation rate. The current deepest ‘blank field’ radio surveys (reaching <10 μJy rms at 1.4 GHz) are sensitive enough to detect starburst galaxies out to z ~ 3, and so potentially offer an excellent way to measure the SFRD. Indeed, modelling of the sub-mJy source counts requires an additional population of faint steep spectrum objects, that are very likely to be starburst galaxies.


2006 ◽  
Vol 649 (1) ◽  
pp. 150-162 ◽  
Author(s):  
D. J. Hanish ◽  
G. R. Meurer ◽  
H. C. Ferguson ◽  
M. A. Zwaan ◽  
T. M. Heckman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document