scholarly journals Weak lensing shear estimation beyond the shape-noise limit: a machine learning approach

Author(s):  
Ofer M Springer ◽  
Eran O Ofek ◽  
Yair Weiss ◽  
Julian Merten

Abstract Weak lensing shear estimation typically results in per galaxy statistical errors significantly larger than the sought after gravitational signal of only a few percent. These statistical errors are mostly a result of shape-noise — an estimation error due to the diverse (and a-priori unknown) morphology of individual background galaxies. These errors are inversely proportional to the limiting angular resolution at which localized objects, such as galaxy clusters, can be probed with weak lensing shear. In this work we report on our initial attempt to reduce statistical errors in weak lensing shear estimation using a machine learning approach — training a multi-layered convolutional neural network to directly estimate the shear given an observed background galaxy image. We train, calibrate and evaluate the performance and stability of our estimator using simulated galaxy images designed to mimic the distribution of HST observations of lensed background sources in the CLASH galaxy cluster survey. Using the trained estimator, we produce weak lensing shear maps of the cores of 20 galaxy clusters in the CLASH survey, demonstrating an RMS scatter reduced by approximately 26% when compared to maps produced with a commonly used shape estimator. This is equivalent to a survey speed enhancement of approximately 60%. However, given the non-transparent nature of the machine learning approach, this result requires further testing and validation. We provide python code to train and test this estimator on both simulated and real galaxy cluster observations. We also provide updated weak lensing catalogues for the 20 CLASH galaxy clusters studied.

2020 ◽  
Vol 160 (5) ◽  
pp. 202
Author(s):  
Carter Rhea ◽  
Julie Hlavacek-Larrondo ◽  
Laurence Perreault-Levasseur ◽  
Marie-Lou Gendron-Marsolais ◽  
Ralph Kraft

Sensors ◽  
2019 ◽  
Vol 19 (21) ◽  
pp. 4609 ◽  
Author(s):  
Marzieh Jalal Abadi ◽  
Luca Luceri ◽  
Mahbub Hassan ◽  
Chun Tung Chou ◽  
Monica Nicoli

This paper presents a system based on pedestrian dead reckoning (PDR) for localization of networked mobile users, which relies only on sensors embedded in the devices and device- to-device connectivity. The user trajectory is reconstructed by measuring step by step the user displacements. Though step length can be estimated rather accurately, heading evaluation is extremely problematic in indoor environments. Magnetometer is typically used, however measurements are strongly perturbed. To improve the location accuracy, this paper proposes a novel cooperative system to estimate the direction of motion based on a machine learning approach for perturbation detection and filtering, combined with a consensus algorithm for performance augmentation by cooperative data fusion at multiple devices. A first algorithm filters out perturbed magnetometer measurements based on a-priori information on the Earth’s magnetic field. A second algorithm aggregates groups of users walking in the same direction, while a third one combines the measurements of the aggregated users in a distributed way to extract a more accurate heading estimate. To the best of our knowledge, this is the first approach that combines machine learning with consensus algorithms for cooperative PDR. Compared to other methods in the literature, the method has the advantage of being infrastructure-free, fully distributed and robust to sensor failures thanks to the pre-filtering of perturbed measurements. Extensive indoor experiments show that the heading error is highly reduced by the proposed approach thus leading to noticeable enhancements in localization performance.


2015 ◽  
Vol 803 (2) ◽  
pp. 50 ◽  
Author(s):  
M. Ntampaka ◽  
H. Trac ◽  
D. J. Sutherland ◽  
N. Battaglia ◽  
B. Póczos ◽  
...  

In this chapter, the authors focus on datasets used in cyberbullying detection research. They describe and compare several datasets applied in previous research and describe in detail the dataset that they decided to apply in their research. They also perform an initial analysis of the dataset to find various characteristics. They preprocess the dataset in several ways for further use and perform affect analysis to find out whether emotion-related features tend to be characteristic for cyberbullying. Based on the results of affect analysis, they also perform an initial attempt to classify cyberbullying data using a simple machine learning approach, which will be considered as a baseline in forthcoming chapters.


Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 1552-P
Author(s):  
KAZUYA FUJIHARA ◽  
MAYUKO H. YAMADA ◽  
YASUHIRO MATSUBAYASHI ◽  
MASAHIKO YAMAMOTO ◽  
TOSHIHIRO IIZUKA ◽  
...  

2020 ◽  
Author(s):  
Clifford A. Brown ◽  
Jonny Dowdall ◽  
Brian Whiteaker ◽  
Lauren McIntyre

Sign in / Sign up

Export Citation Format

Share Document