scholarly journals The first six months of the Advanced LIGO’s and Advanced Virgo’s third observing run with GRANDMA

2019 ◽  
Vol 492 (3) ◽  
pp. 3904-3927 ◽  
Author(s):  
S Antier ◽  
S Agayeva ◽  
V Aivazyan ◽  
S Alishov ◽  
E Arbouch ◽  
...  

ABSTRACT We present the Global Rapid Advanced Network Devoted to the Multi-messenger Addicts (GRANDMA). The network consists of 21 telescopes with both photometric and spectroscopic facilities. They are connected together thanks to a dedicated infrastructure. The network aims at coordinating the observations of large sky position estimates of transient events to enhance their follow-up and reduce the delay between the initial detection and optical confirmation. The GRANDMA programme mainly focuses on follow-up of gravitational-wave alerts to find and characterize the electromagnetic counterpart during the third observational campaign of the Advanced LIGO and Advanced Virgo detectors. But it allows for follow-up of any transient alerts involving neutrinos or gamma-ray bursts, even those with poor spatial localization. We present the different facilities, tools, and methods we developed for this network and show its efficiency using observations of LIGO/Virgo S190425z, a binary neutron star merger candidate. We furthermore report on all GRANDMA follow-up observations performed during the first six months of the LIGO–Virgo observational campaign, and we derive constraints on the kilonova properties assuming that the events’ locations were imaged by our telescopes.

2011 ◽  
Vol 7 (S285) ◽  
pp. 358-360 ◽  
Author(s):  
Ilya Mandel ◽  
Luke Z. Kelley ◽  
Enrico Ramirez-Ruiz

AbstractWe discuss two approaches to searches for gravitational-wave (GW) and electromagnetic (EM) counterparts of binary neutron-star mergers. The first approach relies on triggering archival searches of GW detector data based on detections of EM transients. Quantitative estimates of the improvement to GW detector reach due to the increased confidence in the presence and parameters of a signal from a binary merger gained from the EM transient suggest utilizing other transients in addition to short gamma-ray bursts. The second approach involves following up GW candidates with targeted EM observations. We argue for the use of slower but optimal parameter-estimation techniques and for a more sophisticated use of astrophysical prior information, including galaxy catalogues to find preferred follow-up locations.


2022 ◽  
Vol 924 (2) ◽  
pp. 54
Author(s):  
Polina Petrov ◽  
Leo P. Singer ◽  
Michael W. Coughlin ◽  
Vishwesh Kumar ◽  
Mouza Almualla ◽  
...  

Abstract Searches for electromagnetic counterparts of gravitational-wave signals have redoubled since the first detection in 2017 of a binary neutron star merger with a gamma-ray burst, optical/infrared kilonova, and panchromatic afterglow. Yet, one LIGO/Virgo observing run later, there has not yet been a second, secure identification of an electromagnetic counterpart. This is not surprising given that the localization uncertainties of events in LIGO and Virgo’s third observing run, O3, were much larger than predicted. We explain this by showing that improvements in data analysis that now allow LIGO/Virgo to detect weaker and hence more poorly localized events have increased the overall number of detections, of which well-localized, gold-plated events make up a smaller proportion overall. We present simulations of the next two LIGO/Virgo/KAGRA observing runs, O4 and O5, that are grounded in the statistics of O3 public alerts. To illustrate the significant impact that the updated predictions can have, we study the follow-up strategy for the Zwicky Transient Facility. Realistic and timely forecasting of gravitational-wave localization accuracy is paramount given the large commitments of telescope time and the need to prioritize which events are followed up. We include a data release of our simulated localizations as a public proposal planning resource for astronomers.


2020 ◽  
Vol 641 ◽  
pp. A56
Author(s):  
Xiaoxiao Ren ◽  
Daming Wei ◽  
Zhenyu Zhu ◽  
Yan Yan ◽  
Chengming Li

The joint detection of the gravitational wave signal and the electromagnetic emission from a binary neutron star merger can place unprecedented constraint on the equation of state of supranuclear matter. Although a variety of electromagnetic counterparts have been observed for GW170817, including a short gamma-ray burst, kilonova, and the afterglow emission, the nature of the merger remnant is still unclear, however. The X-ray plateau is another important characteristics of short gamma-ray bursts. This plateau is probably due to the energy injection from a rapidly rotating magnetar. We investigate what we can learn from the detection of a gravitational wave along with the X-ray plateau. In principle, we can estimate the mass of the merger remnant if the X-ray plateau is caused by the central magnetar. We selected eight equations of state that all satisfy the constraint given by the gravitational wave observation, and then calculated the mass of the merger remnants of four short gamma-ray bursts with a well-measured X-ray plateau. If, on the other hand, the mass of the merger remnant can be obtained by gravitational wave information, then by comparing the masses derived by these two different methods can further constrain the equation of state. We discuss the possibility that the merger product is a quark star. In addition, we estimate the possible mass range for the recently discovered X-ray transient CDF-S XT2 that probably originated from a binary neutron star merger. Finally, under the assumption that the post-merger remnant of GW170817 was a supramassive neutron star, we estimated the allowed parameter space of the supramassive neutron star and find that in this case, the magnetic dipole radiation energy is so high that it may have some effects on the short gamma-ray burst and kilonova emission. The lack of detection of these effects suggests that the merger product of GW170817 may not be a supermassive neutron star.


Impact ◽  
2020 ◽  
Vol 2020 (5) ◽  
pp. 30-32
Author(s):  
Michitoshi Yoshida

Professor Michitoshi Yoshida, who is based at Subaru Telescope of National Astronomical Observatory of Japan, is a lead scientist with J-GEM (the Japanese Collaboration for Gravitational- Wave Electro-Magnetic Follow-up) and throughout the course of his career in galactic study, has become increasingly interested in the active phenomena of the universe, such as gamma ray bursts (GRB). J-GEM is embarking on a research approach called multi-messenger astronomy, this method is based on the coordination between classical electromagnetic astronomy, new GW astronomy and particle astronomy, and is opening new opportunities for humans to investigate the Universe.


2020 ◽  
Vol 495 (4) ◽  
pp. 4782-4799 ◽  
Author(s):  
Brendan O’Connor ◽  
Paz Beniamini ◽  
Chryssa Kouveliotou

ABSTRACT Observational follow up of well localized short gamma-ray bursts (SGRBs) has left $20\!-\!30{{\ \rm per\ cent}}$ of the population without a coincident host galaxy association to deep optical and NIR limits (≳26 mag). These SGRBs have been classified as observationally hostless due to their lack of strong host associations. It has been argued that these hostless SGRBs could be an indication of the large distances traversed by the binary neutron star system (due to natal kicks) between its formation and its merger (leading to an SGRB). The distances of GRBs from their host galaxies can be indirectly probed by the surrounding circumburst densities. We show that a lower limit on those densities can be obtained from early afterglow light curves. We find that ${\lesssim}16{{\ \rm per\ cent}}$ of short GRBs in our sample took place at densities ≲10−4 cm−3. These densities represent the expected range of values at distances greater than the host galaxy’s virial radii. We find that out of the five SGRBs in our sample that have been found to be observationally hostless, none are consistent with having occurred beyond the virial radius of their birth galaxies. This implies one of two scenarios. Either these observationally hostless SGRBs occurred outside of the half-light radius of their host galaxy, but well within the galactic halo, or in host galaxies at moderate to high redshifts (z ≳ 2) that were missed by follow-up observations.


1996 ◽  
Vol 165 ◽  
pp. 489-502
Author(s):  
Tsvi Piran

Neutron star binaries, such as the one observed in the famous binary pulsar PSR 1913+16, end their life in a catastrophic merger event (denoted here NS2M). The merger releases ∼5 1053 ergs, mostly as neutrinos and gravitational radiation. A small fraction of this energy suffices to power γ-ray bursts (GRBs) at cosmological distances. Cosmological GRBs must pass, however, an optically thick fireball phase and the observed γ rays emerge only at the end of this phase. Hence, it is difficult to determine the nature of the source from present observations (the agreement between the rates of GRBs and NS2Ms providing only indirect evidence for this model). In the future a coinciding detection of a GRB and a gravitational-radiation signal could confirm this model.


2018 ◽  
Vol 27 (11) ◽  
pp. 1843018 ◽  
Author(s):  
John L. Friedman

Prior to the observation of a double neutron star inspiral and merger, its possible implications were striking. Events whose light and gravitational waves are simultaneously detected could resolve the 50-year mystery of the origin of short gamma-ray bursts; they might provide strong evidence for (or against) mergers as the main source of half the heaviest elements (the [Formula: see text]-process elements); and they could give an independent measurement of the Hubble constant. The closest events can also address a primary goal of gravitational-wave astrophysics: From the imprint of tides on inspiral waveforms, one can find the radius and tidal distortion of the inspiraling stars and infer the behavior of cold matter above nuclear density. Remarkably, the first observation of the inspiral and coalescence of a double neutron star system was accompanied by a gamma-ray burst and then an array of electromagnetic counterparts, and the combined effort of the gravitational-wave and astronomy communities has led to dramatic advances along all of these anticipated avenues of multimessenger astrophysics.


2020 ◽  
Vol 639 ◽  
pp. A15
Author(s):  
Raphaël Duque ◽  
Paz Beniamini ◽  
Frédéric Daigne ◽  
Robert Mochkovitch

The only binary neutron star merger gravitational wave event with detected electromagnetic counterparts recorded to date is GRB170817A. This merger occurred in a rarefied medium with a density smaller than 10−3 − 10−2 cm−3. Since kicks are imparted to neutron star binaries upon formation, and due to their long delay times before merger, such low-density circum-merger media are generally expected. However, there is some indirect evidence for fast-merging or low-kick binaries, which would coalesce in denser environments. Nonetheless, present astronomical data are largely inconclusive on the possibility of these high-density mergers. We describe a method to directly probe this hypothetical population of high-density mergers through multi-messenger observations of binary neutron star merger afterglows, exploiting the high sensitivity of these signals to the density of the merger environment. This method is based on a sample of merger afterglows that has yet to be collected. Its constraining power is large, even with a small sample of events. We discuss the method’s limitations and applicability. In the upcoming era of third-generation gravitational wave detectors, this method’s potential will be fully realized as it will allow us to probe mergers that occurred soon after the peak of cosmic star formation, provided the follow-up campaigns are able to locate the sources.


Sign in / Sign up

Export Citation Format

Share Document