scholarly journals Redshift space distortion of 21 cm line at 1 < $z$ < 5 with cosmological hydrodynamic simulations

2019 ◽  
Vol 484 (4) ◽  
pp. 5389-5399 ◽  
Author(s):  
Rika Ando ◽  
Atsushi J Nishizawa ◽  
Kenji Hasegawa ◽  
Ikkoh Shimizu ◽  
Kentaro Nagamine
2008 ◽  
Vol 685 (2) ◽  
pp. 1069-1088 ◽  
Author(s):  
Christian D. Ott ◽  
Adam Burrows ◽  
Luc Dessart ◽  
Eli Livne

Author(s):  
Carolina Villarreal D’Angelo ◽  
Aline A Vidotto ◽  
Alejandro Esquivel ◽  
Gopal Hazra ◽  
Allison Youngblood

Abstract The GJ 436 planetary system is an extraordinary system. The Neptune-size planet that orbits the M3 dwarf revealed in the Lyα line an extended neutral hydrogen atmosphere. This material fills a comet-like tail that obscures the stellar disc for more than 10 hours after the planetary transit. Here, we carry out a series of 3D radiation hydrodynamic simulations to model the interaction of the stellar wind with the escaping planetary atmosphere. With these models, we seek to reproduce the $\sim 56\%$ absorption found in Lyα transits, simultaneously with the lack of absorption in Hα transit. Varying the stellar wind strength and the EUV stellar luminosity, we search for a set of parameters that best fit the observational data. Based on Lyα observations, we found a stellar wind velocity at the position of the planet to be around [250-460] km s−1 with a temperature of [3 − 4] × 105 K. The stellar and planetary mass loss rates are found to be 2 × 10−15 M⊙ yr−1 and ∼[6 − 10] × 109 g s−1, respectively, for a stellar EUV luminosity of [0.8 − 1.6] × 1027 erg s−1. For the parameters explored in our simulations, none of our models present any significant absorption in the Hα line in agreement with the observations.


2021 ◽  
Vol 11 (8) ◽  
pp. 3378
Author(s):  
Jie Chen ◽  
Darby J. Luscher ◽  
Saryu J. Fensin

A void coalescence term was proposed as an addition to the original void nucleation and growth (NAG) model to accurately describe void evolution under dynamic loading. The new model, termed as modified void nucleation and growth model (MNAG model), incorporated analytic equations to explicitly account for the evolution of the void number density and the void volume fraction (damage) during void nucleation, growth, as well as the coalescence stage. The parameters in the MNAG model were fitted to molecular dynamics (MD) shock data for single-crystal and nanocrystalline Ta, and the corresponding nucleation, growth, and coalescence rates were extracted. The results suggested that void nucleation, growth, and coalescence rates were dependent on the orientation as well as grain size. Compared to other models, such as NAG, Cocks–Ashby, Tepla, and Tonks, which were only able to reproduce early or later stage damage evolution, the MNAG model was able to reproduce all stages associated with nucleation, growth, and coalescence. The MNAG model could provide the basis for hydrodynamic simulations to improve the fidelity of the damage nucleation and evolution in 3-D microstructures.


Author(s):  
En-Kun Li ◽  
Minghui Du ◽  
Zhi-Huan Zhou ◽  
Hongchao Zhang ◽  
Lixin Xu

Abstract Using the fσ8(z) redshift space distortion (RSD) data, the $\sigma _8^0-\Omega _m^0$ tension is studied utilizing a parameterization of growth rate f(z) = Ωm(z)γ. Here, f(z) is derived from the expansion history H(z) which is reconstructed from the observational Hubble data applying the Gaussian Process method. It is found that different priors of H0 have great influences on the evolution curve of H(z) and the constraint of $\sigma _8^0-\Omega _m^0$. When using a larger H0 prior, the low redshifts H(z) deviate significantly from that of the ΛCDM model, which indicates that a dark energy model different from the cosmological constant can help to relax the H0 tension problem. The tension between our best-fit values of $\sigma _8^0-\Omega _m^0$ and that of the Planck 2018 ΛCDM (PLA) will disappear (less than 1σ) when taking a prior for H0 obtained from PLA. Moreover, the tension exceeds 2σ level when applying the prior H0 = 73.52 ± 1.62 km/s/Mpc resulted from the Hubble Space Telescope photometry. By comparing the $S_8 -\Omega _m^0$ planes of our method with the results from KV450+DES-Y1, we find that using our method and applying the RSD data may be helpful to break the parameter degeneracies.


2005 ◽  
Vol 627 (1) ◽  
pp. L17-L20 ◽  
Author(s):  
Jeremy Bailin ◽  
Daisuke Kawata ◽  
Brad K. Gibson ◽  
Matthias Steinmetz ◽  
Julio F. Navarro ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document