Testing the effect of H0 on fσ8 tension using a Gaussian Process method
Abstract Using the fσ8(z) redshift space distortion (RSD) data, the $\sigma _8^0-\Omega _m^0$ tension is studied utilizing a parameterization of growth rate f(z) = Ωm(z)γ. Here, f(z) is derived from the expansion history H(z) which is reconstructed from the observational Hubble data applying the Gaussian Process method. It is found that different priors of H0 have great influences on the evolution curve of H(z) and the constraint of $\sigma _8^0-\Omega _m^0$. When using a larger H0 prior, the low redshifts H(z) deviate significantly from that of the ΛCDM model, which indicates that a dark energy model different from the cosmological constant can help to relax the H0 tension problem. The tension between our best-fit values of $\sigma _8^0-\Omega _m^0$ and that of the Planck 2018 ΛCDM (PLA) will disappear (less than 1σ) when taking a prior for H0 obtained from PLA. Moreover, the tension exceeds 2σ level when applying the prior H0 = 73.52 ± 1.62 km/s/Mpc resulted from the Hubble Space Telescope photometry. By comparing the $S_8 -\Omega _m^0$ planes of our method with the results from KV450+DES-Y1, we find that using our method and applying the RSD data may be helpful to break the parameter degeneracies.