scholarly journals Testing the effect of H0 on fσ8 tension using a Gaussian Process method

Author(s):  
En-Kun Li ◽  
Minghui Du ◽  
Zhi-Huan Zhou ◽  
Hongchao Zhang ◽  
Lixin Xu

Abstract Using the fσ8(z) redshift space distortion (RSD) data, the $\sigma _8^0-\Omega _m^0$ tension is studied utilizing a parameterization of growth rate f(z) = Ωm(z)γ. Here, f(z) is derived from the expansion history H(z) which is reconstructed from the observational Hubble data applying the Gaussian Process method. It is found that different priors of H0 have great influences on the evolution curve of H(z) and the constraint of $\sigma _8^0-\Omega _m^0$. When using a larger H0 prior, the low redshifts H(z) deviate significantly from that of the ΛCDM model, which indicates that a dark energy model different from the cosmological constant can help to relax the H0 tension problem. The tension between our best-fit values of $\sigma _8^0-\Omega _m^0$ and that of the Planck 2018 ΛCDM (PLA) will disappear (less than 1σ) when taking a prior for H0 obtained from PLA. Moreover, the tension exceeds 2σ level when applying the prior H0 = 73.52 ± 1.62 km/s/Mpc resulted from the Hubble Space Telescope photometry. By comparing the $S_8 -\Omega _m^0$ planes of our method with the results from KV450+DES-Y1, we find that using our method and applying the RSD data may be helpful to break the parameter degeneracies.

2011 ◽  
Vol 01 ◽  
pp. 228-233
Author(s):  
YUNGUI GONG

The growth rate of matter perturbation and the expansion rate of the Universe can be used to distinguish modified gravity and dark energy models. Remarkably, the growth rate can be approximated as Ωγ. We discuss the dependence of the growth index γ on the dimensionless matter energy density Ω for a more accurate approximation of the growth factor. The observational data are used to fit different models. The data strongly disfavor the Dvali-Gabadadze-Porrati model. For the ΛCDM model, we find that [Formula: see text]. For the Dvali-Gabadadze-Porrati model, we find that [Formula: see text].


MOMENTO ◽  
2020 ◽  
pp. 1-10
Author(s):  
Carlos Rodriguez-Benites ◽  
Mauricio Cataldo ◽  
Marcial Vásquez-Arteaga

In this work we explore a Holographic Dark Energy Model in a flat Friedmann-LemaÎtre-Robertson-Walker Universe, which contains baryons, radiation, cold dark matter and dark energy within the framework of General Relativity. Furthermore, we consider three types of phenomenological interactions in the dark sector. With the proposed model we obtained the algebraic expressions for the cosmological parameters of our interest: the deceleration and coincidence parameters. Likewise, we graphically compare the proposed model with the ΛCDM model.


2010 ◽  
Vol 25 (11n12) ◽  
pp. 909-921 ◽  
Author(s):  
TAOTAO QIU

Quintom models, with its Equation of State being able to cross the cosmological constant boundary w = -1, turns out to be attractive for phenomenological study. It can not only be applicable for dark energy model for current universe, but also lead to a bounce scenario in the early universe.


2012 ◽  
Vol 27 (22) ◽  
pp. 1250130 ◽  
Author(s):  
ZHUO-PENG HUANG ◽  
YUE-LIANG WU

We present a best-fit analysis on the single-parameter holographic dark energy model characterized by the conformal-age-like length, [Formula: see text]. Based on the Union2 compilation of 557 supernova Ia (SNIa) data, the baryon acoustic oscillation (BAO) results from the Sloan Digital Sky Survey data release 7 (SDSS DR7) and the cosmic microwave background radiation (CMB) data from the 7-year Wilkinson Microwave Anisotropy Probe (WMAP7), we show that the model gives the minimal [Formula: see text], which is comparable to [Formula: see text] for the ΛCDM model. The single parameter d concerned in the model is found to be d = 0.232±0.006±0.009. Since the fractional density of dark energy Ωde~ d2a2at a ≪ 1, the fraction of dark energy is naturally negligible in the early universe, Ωde≪ 1 at a ≪ 1. The resulting constraints on the present fractional energy density of matter and the equation of state are [Formula: see text] and [Formula: see text] respectively. We also provide a systematic analysis on the cosmic evolutions of the fractional energy density of dark energy, the equation of state of dark energy, the deceleration parameter and the statefinder. It is noticed that the equation of state crosses from wde> -1 to wde< -1, the universe transits from decelerated expansion (q > 0) to accelerated expansion (q < 0) recently, and the statefinder may serve as a sensitive diagnostic to distinguish the CHDE model with the ΛCDM model.


2014 ◽  
Vol 23 (02) ◽  
pp. 1450012 ◽  
Author(s):  
ORLANDO LUONGO ◽  
HERNANDO QUEVEDO

The problem of the cosmic acceleration is here revisited by using the fact that the adiabatic speed of sound can be assumed to be negligible small. Within the context of general relativity, the total energy budget is recovered under the hypothesis of a vanishing speed of sound by assuming the existence of one fluid only. We find a cosmological model which reproduces the main results of the ΛCDM paradigm at late-times, showing an emergent cosmological constant, which is not at all related with the vacuum energy term. As a consequence, the model presented here behaves as a unified dark energy (DE) model.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
L. N. Granda

Abstract New corrections to General Relativity are considered in the context of modified f(R) gravity, that satisfy cosmological and local gravity constraints. The proposed models behave asymptotically as R − 2Λ at large curvature and show the vanishing of the cosmological constant at the flat spacetime limit. The chameleon mechanism and thin shell restrictions for local systems were analyzed, and bounds on the models were found. The steepness of the deviation parameter m at late times leads to measurable signal of scalar-tensor regime in matter perturbations, that allows to detect departures form the ΛCDM model. The theoretical results for the evolution of the weighted growth rate fσ8(z), from the proposed models, were analyzed.


2009 ◽  
Vol 24 (17) ◽  
pp. 1355-1360 ◽  
Author(s):  
LIXIN XU ◽  
WENBO LI ◽  
JIANBO LU

In this paper, a holographic dark energy model, dubbed Ricci dark energy, is confronted with cosmological observational data from type Ia Supernovae (SN Ia), baryon acoustic oscillations (BAO) and cosmic microwave background (CMB). By using maximum likelihood method, we found that Ricci dark energy model is a viable candidate of dark energy model with the best fit parameters: Ωm0 = 0.34 ± 0.04, α = 0.38 ± 0.03 with 1σ error. Here, α is a dimensionless parameter related to Ricci dark energy ρR and Ricci scalar R, i.e. ρR ∝ αR.


2020 ◽  
pp. 2050334
Author(s):  
P. B. Krishna ◽  
Titus K. Mathew

The spacial expansion of the universe could be described as a tendency for satisfying holographic equipartition which inevitably demands the presence of dark energy. We explore whether this novel idea proposed by Padmanabhan gives any additional insights into the nature of dark energy. In particular, we obtain the constraints imposed by the law of emergence on the equation of state parameter, [Formula: see text]. We also present a thermodynamic motivation for the obtained constraints on [Formula: see text]. Further, we explicitly prove the feasibility of describing a dynamic dark energy model through the law of emergence. Interestingly, both holographic equipartition and the entropy maximization demand an asymptotically de Sitter universe with [Formula: see text], rather than a pure cosmological constant.


2008 ◽  
Vol 17 (11) ◽  
pp. 2025-2048 ◽  
Author(s):  
JUN-QING XIA ◽  
HONG LI ◽  
GONG-BO ZHAO ◽  
XINMIN ZHANG

In this paper we investigate the constraints on the cosmological parameters, especially the equation of state of dynamical dark energy w DE , the inflationary parameters ns, αs and r, the total neutrino mass ∑ mν and the curvature of the universe ΩK, using the simulated data of future Planck measurement. First, we determine the cosmological parameters with the current observations, including ESSENCE (192 samples), Three-Year WMAP (WMAP3), Boomerang-2K2, CBI, VSA, ACBAR, SDSS LRG and 2dFGRS, and then we take the best-fit model as the fiducial model in the ensuing simulations. In the simulations we pay particular attention to the effects of the dynamical dark energy in the determination of the cosmological parameters. For this reason, in order to make our constraints more robust, we have added the simulated SNAP data to our simulations. Using the present data, we find that the Quintom dark energy model is mildly favored, while the ΛCDM model remains a good fit. In the framework of the dynamical dark energy model, the constraints on the inflationary parameters, ∑ mν and ΩK, become weak, compared with the constraints in the ΛCDM model. Intriguingly, we find that the inflationary models with a "blue" tilt, which are excluded about 2σ in the ΛCDM model, are well within the 2σ region with the presence of the dynamics of dark energy. The upper limits of neutrino mass are weakened by a factor of 2 (95% CL) — say, ∑ mν < 1.59 eV and ∑ mν < 1.53 eV for two forms of parametrization of the equation of state of dark energy. The flat universe is a good fit to the current data, namely |ΩK| < 0.03 (95% CL). With the simulated Planck and SNAP data, the dynamical dark energy model and the ΛCDM model might be distinguished at the 4σ confidence level. And the uncertainties of the inflationary parameters, ∑ mν and ΩK, can be reduced significantly in the framework of the dynamical dark energy model. We also constrain the rotation angle Δα, denoting the possible CPT violation, from the simulated Planck and CMBpol data and find that our results are much more stringent than the current constraint and will be used to verify the CPT symmetry with a higher precision.


Sign in / Sign up

Export Citation Format

Share Document