scholarly journals Deciphering the nature of the pulsar wind nebula CTB 87 with XMM–Newton

2019 ◽  
Vol 491 (2) ◽  
pp. 3013-3021 ◽  
Author(s):  
B Guest ◽  
S Safi-Harb ◽  
A MacMaster ◽  
R Kothes ◽  
B Olmi ◽  
...  

ABSTRACT CTB 87 (G74.9+1.2) is an evolved supernova remnant (SNR) which hosts a peculiar pulsar wind nebula (PWN). The X-ray peak is offset from that observed in radio and lies towards the edge of the radio nebula. The putative pulsar, CXOU J201609.2+371110, was first resolved with Chandra and is surrounded by a compact and a more extended X-ray nebula. Here, we use a deep XMM–Newton observation to examine the morphology and evolutionary stage of the PWN and to search for thermal emission expected from a supernova shell or reverse shock interaction with supernova ejecta. We do not find evidence of thermal X-ray emission from the SNR and place an upper limit on the electron density of 0.05 cm−3 for a plasma temperature kT ∼ 0.8 keV. The morphology and spectral properties are consistent with a ∼20-kyr-old relic PWN expanding into a stellar wind-blown bubble. We also present the first X-ray spectral index map from the PWN and show that we can reproduce its morphology by means of 2D axisymmetric relativistic hydrodynamical simulations.

2004 ◽  
Vol 218 ◽  
pp. 175-178
Author(s):  
Eric van der Swaluw ◽  
Turlough P. Downes

We present a model of a pulsar-driven supernova remnant, by using a hydrodynamics code, which simulates the evolution of a pulsar wind nebula when the pulsar is moving at a high velocity through its expanding supernova remnant. The simulation shows four different stages of the pulsar wind nebula: the supersonic expansion stage, the reverse shock interaction stage, the subsonic expansion stage and ultimately the bow shock stage. Due to the high velocity of the pulsar, the position of the pulsar is located at the head of the pulsar wind bubble, after the passage of the reverse shock. The resulting morphology of the pulsar wind bubble is therefore similar to the morphology of a bow shock pulsar wind nebulA. We show how to distinguish these two different stages, and apply this method to the SNR G327.1–1.1, for which we argue that there is no bow shock around its pulsar wind nebulA.


2004 ◽  
Vol 218 ◽  
pp. 199-202
Author(s):  
John P. Hughes ◽  
Robert B. Friedman ◽  
Patrick Slane ◽  
Sangwook Park

We report the discovery of pulsed X-ray emission from the compact object CXOU J112439.1-591620 within the Galactic supernova remnant G292.0+1.8 using the High Resolution Camera on the Chandra X-Ray Observatory. The X-ray period is consistent with the extrapolation of the radio period and spindown rate of PSR J1124−5916. The X-ray pulse is single peaked and broad. There is no optical counterpart to a limit of MV ∼ 26. The pressure in the pulsar wind nebula is considerably less than that in the reverse-shock-heated ejecta and circumstellar medium, indicating that the reverse shock has not yet begun to interact with the nebula.


2004 ◽  
Vol 218 ◽  
pp. 185-188
Author(s):  
Patrick Slane

As the presumed remnant of SN 1181, 3C 58 houses one of the youngest known neutron stars in the Galaxy. The properties of this young pulsar and its associated pulsar wind nebula (PWN) differ considerably from those of the Crab Nebula, and may well offer a more typical example of the endpoint of massive star collapse. High resolution X-ray studies reveal structures in the inner nebula that may be associated with the pulsar wind termination shock, a jet that may be aligned with the rotation axis, and other regions of enhanced emission. Spectral variations in the PWN are consistent with the expected evolution of the postshock flow, and complex loops of emission are seen in the nebula interior. Limits on the neutron star surface temperature fall below standard cooling models, indicating that some more rapid neutrino cooling process is required. The outer regions of 3C 58 show thermal emission with enhanced levels of neon, indicative of shocked ejecta bounding the PWN.


1983 ◽  
Vol 101 ◽  
pp. 1-15 ◽  
Author(s):  
Paul Gorenstein ◽  
Frederick Seward ◽  
Wallace Tucker

A high resolution X-ray image of Tycho's supernova remnant obtained from the Einstein Observatory reveals three components of X-ray emission that we identify with shocked interstellar material, diffuse ejecta, and clumpy ejecta. This picture is applied to derive the mass of X-ray emitting material. Assuming a distance of 3 kpc, an absorbing column density of 3 × 1021 atoms/cm2, and using an ion-electron non-equilibrium calculation for the emissivity, we find the average density of the ISM is 0.4 atoms/cm3, and the energy contained in the remnant is 1.4 × 1051 ergs. The total mass of X-ray emitting material in the remnant is ≈4 M⊙, ≈2 M⊙ ejecta and ≈2 M⊙ swept up, putting the remnant at an intermediate state between a free expansion and the Sedov phase. There is no evidence for neutron star. The upper limit on the surface temperature is in the range 1.1 to 1.8 × 106K.


2013 ◽  
Vol 9 (S296) ◽  
pp. 108-111
Author(s):  
Alak Ray ◽  
Sayan Chakraborti ◽  
Naveen Yadav ◽  
Randall Smith ◽  
Poonam Chandra ◽  
...  

AbstractType IIP SNe constitute a major fraction of all core-collapse supernovae and arise from massive stars that end their lives close to Red Supergiants. The blastwave from the SN interacting with the progenitor's circumstellar matter produces a hot region bounded by a forward and a reverse shock from which most of the X-ray emission originates. Analysis of archival Chandra observations of SN 2004dj, one of the nearest supernovae since SN 1987A, together with published data from radio and optical bands determines the pre-explosion mass-loss rate, blastwave speed, electron acceleration and magnetic field amplification efficiencies. X-ray emission arises from both inverse Compton scattering by non-thermal electrons accelerated in the forward shock and from thermal emission from the supernova ejecta hit by the reverse shock. Determination of the properties of the radiating plasma based on the separation of thermal and non-thermal radiation differentiates different types of supernovae and their environments.


2014 ◽  
Vol 1 (1) ◽  
pp. 200-204
Author(s):  
Satoru Katsuda ◽  
Hiroshi Tsunemi

High-resolution X-ray spectroscopy of Galactic supernova remnants (SNRs), based on grating spectrometers onboard XMM-Newton and Chandra, has been revealing a variety of new astrophysical phenomena. Broadened oxygen lines for a northwestern compact knot in SN 1006 clearly show a high oxygen temperature of ~300 keV. The high temperature together with a lower electron temperature (<em>kT<sub>e</sub></em> ~ 1 keV) can be reasonably interpreted as temperature non-equilibration between electrons and oxygen behind a collisionless shock. An ejecta knot in the Puppis A SNR shows blueshifted line emission by ~ 1500kms<sup>-1</sup>. The line widths are fairly narrow in contrast to the SN 1006's knot; an upper limit of 0.9 eV is obtained for O VIII Lyα, which translates to an oxygen temperature of <em>kT<sub>O</sub></em> &lt; 30 keV. The low temperature suggests that the knot was heated by a reverse shock whose velocity is 4 times slower than that of a forward shock. Anomalous intensity ratios in O VII Heα lines, i.e., a stronger forbidden line than a resonance line, is found in a cloud-shock interaction region in Puppis A. The line ratio can be best explained by the charge-exchange emission that should arise at interfaces between the cold/warm clouds and the hot plasma. There are several other targets for which we plan to analyze high-quality grating data prior to the operation of the soft X-ray spectrometer onboard Astro-H.


2011 ◽  
Vol 7 (S279) ◽  
pp. 317-318 ◽  
Author(s):  
Yu Aoki ◽  
Takahiro Enomoto ◽  
Yoichi Yatsu ◽  
Nobuyuki Kawai ◽  
Takeshi Nakamori ◽  
...  

AbstractWe report the Suzaku follow-up observations of the Gamma-ray pulsars, 1FGL J0614,13328, J1044.55737, J1741.82101, and J1813.31246, which were discovered by the Fermi Gamma-ray observatory. Analysing Suzaku/XIS data, we detected X-ray counterparts of these pulsars in the Fermi error circle and interpreted their spectra with absorbed power-law functions. These results indicate that the origin of these X-ray sources is non-thermal emission from the pulsars or from Pulsar Wind Nebulae (PWNe) surrounding them. Moreover we found that J1741.82101 exhibits a peculiar profile: spin-down luminosity vs flux ratio between X- and gamma-rays is unusually large compared to usual radio pulsars.


2013 ◽  
Vol 774 (1) ◽  
pp. 33 ◽  
Author(s):  
H. Matheson ◽  
S. Safi-Harb ◽  
R. Kothes
Keyword(s):  
X Ray ◽  

2019 ◽  
Vol 491 (4) ◽  
pp. 5732-5739
Author(s):  
L Duvidovich ◽  
A Petriella ◽  
E Giacani

ABSTRACT This paper aims to provide new insights on the origin of the TeV source VER J1907+062 through new high-quality radio observations. We used the Karl G. Jansky Very Large Array (VLA) to observe the whole extension of VER J1907+062 at 1.5 GHz with a mosaicking technique and the PSR J1907+0602 in a single pointing at 6 GHz. These data were used together with 12CO and atomic hydrogen observations obtained from public surveys to investigate the interstellar medium in the direction of VER J1907+062. The new radio observations do not show any evidence of a pulsar wind nebula (PWN) driven by the pulsars present in the field and no radio counterpart to the proposed X-ray PWN powered by PSR J1907+0602 is seen in the new VLA image at 6 GHz down to a noise level of 10 $\mu$Jy beam−1. Molecular clouds were discovered over the eastern, southern, and western borders of the radio shell of G40.5−0.5, suggesting an association with this supernova remnant. We explored several scenarios for the origin of VER J1907+062. We propose as the most probable scenario one in which the TeV emission is produced by two separated γ-ray sources located at different distances: one of leptonic origin and associated with a PWN powered by PSR J1907+0602 at ∼3.2 kpc and another of hadronic origin and produced by the interaction between G40.5−0.5 and the surrounding molecular gas at ∼8.7 kpc.


Sign in / Sign up

Export Citation Format

Share Document