scholarly journals The HASHTAG project I. A survey of CO(3–2) emission from the star forming disc of M31

2019 ◽  
Vol 492 (1) ◽  
pp. 195-209 ◽  
Author(s):  
Zongnan Li ◽  
Zhiyuan Li ◽  
Matthew W L Smith ◽  
Christine D Wilson ◽  
Yu Gao ◽  
...  

ABSTRACT We present a CO(3–2) survey of selected regions in the M31 disc as part of the JCMT large programme, HARP and SCUBA-2 High-Resolution Terahertz Andromeda Galaxy Survey (HASHTAG). The 12 CO(3–2) fields in this survey cover a total area of 60 arcmin2, spanning a deprojected radial range of 2–14 kpc across the M31 disc. Combining these observations with existing IRAM 30 m CO(1–0) observations and JCMT CO(3–2) maps of the nuclear region of M31, as well as dust temperature and star formation rate surface density maps, we are able to explore the radial distribution of the CO(3–2)/CO(1–0) integrated intensity ratio (R31) and its relationship with dust temperature and star formation. We find that the value of R31 between 2 and 9 kpc galactocentric radius is 0.14, significantly lower than what is seen in the nuclear ring at 1 kpc (R31 ∼ 0.8), only to rise again to 0.27 for the fields centred on the 10 kpc star forming ring. We also found that R31 is positively correlated with dust temperature, with Spearman’s rank correlation coefficient ρ = 0.55. The correlation between star formation rate surface density and CO(3–2) intensity is much stronger than with CO(1–0), with ρ = 0.54 compared to –0.05, suggesting that the CO(3–2) line traces warmer and denser star forming gas better. We also find that R31 correlates well with star formation rate surface density, with ρ = 0.69.

2019 ◽  
Vol 492 (1) ◽  
pp. 1492-1512
Author(s):  
S Gillman ◽  
A L Tiley ◽  
A M Swinbank ◽  
C M Harrison ◽  
Ian Smail ◽  
...  

ABSTRACT We present an analysis of the gas dynamics of star-forming galaxies at z ∼ 1.5 using data from the KMOS Galaxy Evolution Survey. We quantify the morphology of the galaxies using HSTcandels imaging parametrically and non-parametrically. We combine the H α dynamics from KMOS with the high-resolution imaging to derive the relation between stellar mass (M*) and stellar specific angular momentum (j*). We show that high-redshift star-forming galaxies at z ∼ 1.5 follow a power-law trend in specific stellar angular momentum with stellar mass similar to that of local late-type galaxies of the form j*  ∝  M$_*^{0.53\, \pm \, 0.10}$. The highest specific angular momentum galaxies are mostly disc-like, although generally both peculiar morphologies and disc-like systems are found across the sequence of specific angular momentum at a fixed stellar mass. We explore the scatter within the j* – M* plane and its correlation with both the integrated dynamical properties of a galaxy (e.g. velocity dispersion, Toomre Qg, H α star formation rate surface density ΣSFR) and its parametrized rest-frame UV / optical morphology (e.g. Sérsic index, bulge to total ratio, clumpiness, asymmetry, and concentration). We establish that the position in the j* – M* plane is strongly correlated with the star-formation surface density and the clumpiness of the stellar light distribution. Galaxies with peculiar rest-frame UV / optical morphologies have comparable specific angular momentum to disc- dominated galaxies of the same stellar mass, but are clumpier and have higher star formation rate surface densities. We propose that the peculiar morphologies in high-redshift systems are driven by higher star formation rate surface densities and higher gas fractions leading to a more clumpy interstellar medium.


2020 ◽  
Vol 897 (1) ◽  
pp. 61
Author(s):  
Berzaf Berhane Teklu ◽  
Yulong Gao ◽  
Xu Kong ◽  
Zesen Lin ◽  
Zhixiong Liang

2015 ◽  
Vol 11 (S315) ◽  
pp. 183-190
Author(s):  
James Di Francesco

AbstractWe explore the relationship between the total gas surface density and star formation rate surface density, a.k.a., the “Kennicutt-Schmidt relation,” in a Galactic context. Specifically, we probe the origins of thresholds in the behaviour of the K-S relation at 10 M⊙ pc−2 and 100-200 M⊙ pc−2 using images from the Herschel Hi-GAL and Gould Belt surveys. In both cases, pervasive filamentary structures are seen, possibly due to turbulent motions. The Hi-GAL image supports the view that at ~10 M⊙ pc−2 gas becomes molecular, leading to the formation of clouds that harbour star formation. The GBS images suggest the 100-200 M⊙ pc−2 threshold originates from the nature of filaments being stable until a critical column density of ~160 M⊙ pc−2 is reached. Therefore, the transition between non-star-forming and star-forming gas in clouds (and galaxies) may be set universally by the dynamical properties of filaments.


2021 ◽  
Vol 19 (48) ◽  
pp. 52-65
Author(s):  
Salwa H. Kareem ◽  
Yasir Ezzuldeen Rashed

An optical spectroscopic study is reported in this article to study the correlation between the supermassive black hole (SMBH) and the star formation rate (SFR) for a sample of Seyfert galaxies type (I and II). The study focused on 45 galaxy of Seyfert 1, in addition to 45 galaxy of Seyfert 2, where these samples have been selected form different survey of Salon Digital Sky Survey (SDSS). The redshift (z) of these objects were between (0.02 – 0.26). The results of Seyfert 1 galaxies shows that there good correlation between the SMBH and the SFR depending on statistical analysis parameter named Spearman’s Rank Correlation in a factor of (ρ=0.609), as well as the Seyfert 2 galaxies results show a good correlation between the SMBH and the SFR in a factor of (ρ=0.551). Furthermore, different types of line-regressions were fitted between the data (e.g. linear, exponential, and power) to choose the more suitable line among the data and extract the mathematical formula that explain this behavior.


Author(s):  
Roland M Crocker ◽  
Mark R Krumholz ◽  
Todd A Thompson

Abstract Cosmic rays (CRs) are a plausible mechanism for launching winds of cool material from the discs of star-forming galaxies. However, there is no consensus on what types of galaxies likely host CR-driven winds, or what role these winds might play in regulating galaxies’ star formation rates. Using a detailed treatment of the transport and losses of hadronic CRs developed in the previous paper in this series, here we develop a semi-analytic model that allows us to assess the viability of using CRs to launch cool winds from galactic discs. In particular, we determine the critical CR fluxes – and corresponding star formation rate surface densities – above which hydrostatic equilibrium within a given galaxy is precluded because CRs drive the gas off in a wind or otherwise render it unstable. Our model demonstrates that catastrophic, CR-driven wind loss is a possibility at galactic mean surface densities below $\, {\lesssim}\, 10^2 \ M_{\odot }$ pc−2. In this regime – encompassing the Galaxy and local dwarfs – the locus of the CR stability curve patrols the high side of the observed distribution of galaxies in the Kennicutt-Schmidt parameter space of star formation rate versus gas surface density. However, hadronic losses render CRs unable to drive global winds in galaxies with surface densities above the ∼102 − 103M⊙ pc−2 transition region. Our results show that quiescent, low surface density galaxies like the Milky Way are poised on the cusp of instability, such that small changes to ISM parameters can lead to the launching of CR-driven outflows, and we suggest that, as a result, CR feedback sets an ultimate limit to the star formation efficiency of most modern galaxies.


2020 ◽  
Vol 493 (1) ◽  
pp. L39-L43 ◽  
Author(s):  
Sara L Ellison ◽  
Mallory D Thorp ◽  
Lihwai Lin ◽  
Hsi-An Pan ◽  
Asa F L Bluck ◽  
...  

ABSTRACT Using a sample of 11 478 spaxels in 34 galaxies with molecular gas, star formation, and stellar maps taken from the ALMA-MaNGA QUEnching and STar formation (ALMaQUEST) survey, we investigate the parameters that correlate with variations in star formation rates on kpc scales. We use a combination of correlation statistics and an artificial neural network to quantify the parameters that drive both the absolute star formation rate surface density (ΣSFR), as well as its scatter around the resolved star-forming main sequence (ΔΣSFR). We find that ΣSFR is primarily regulated by molecular gas surface density ($\Sigma _{\rm H_2}$) with a secondary dependence on stellar mass surface density (Σ⋆), as expected from an ‘extended Kennicutt–Schmidt relation’. However, ΔΣSFR is driven primarily by changes in star formation efficiency (SFE), with variations in gas fraction playing a secondary role. Taken together, our results demonstrate that whilst the absolute rate of star formation is primarily set by the amount of molecular gas, the variation of star formation rate above and below the resolved star-forming main sequence (on kpc scales) is primarily due to changes in SFE.


2020 ◽  
Vol 634 ◽  
pp. A26 ◽  
Author(s):  
L. S. Pilyugin ◽  
E. K. Grebel ◽  
I. A. Zinchenko ◽  
J. M. Vílchez ◽  
F. Sakhibov ◽  
...  

We derive the photometric, kinematic, and abundance characteristics of 18 star-forming MaNGA galaxies with fairly regular velocity fields and surface brightness distributions and with a large offset between the measured position angles of the major kinematic and photometric axes, ΔPA ≳ 20°. The aim is to examine if there is any other distinctive characteristic common to these galaxies. We found morphological signs of interaction in some (in 11 out of 18) but not in all galaxies. The observed velocity fields show a large variety; the maps of the isovelocities vary from an hourglass-like appearance to a set of straight lines. The position angles of the major kinematic axes of the stellar and gas rotations are close to each other. The values of the central oxygen abundance, radial abundance gradient, and star formation rate are distributed within the intervals defined by galaxies with small (no) ΔPA of similar mass. Thus, we do not find any specific characteristic common to all galaxies with large ΔPA. Instead, the properties of these galaxies are similar to those of galaxies with small (no) ΔPA. This suggests that either the reason responsible for the large ΔPA does not influence other characteristics or the galaxies with large ΔPA do not share a common origin, they can, instead, originate through different channels.


2020 ◽  
Vol 500 (1) ◽  
pp. 40-53
Author(s):  
Fernanda Roman-Oliveira ◽  
Ana L Chies-Santos ◽  
Fabricio Ferrari ◽  
Geferson Lucatelli ◽  
Bruno Rodríguez Del Pino

ABSTRACT We explore the morphometric properties of a group of 73 ram-pressure stripping candidates in the A901/A902 multicluster system, at z∼ 0.165, to characterize the morphologies and structural evolution of jellyfish galaxies. By employing a quantitative measurement of morphometric indicators with the algorithm morfometryka on Hubble Space Telescope (F606W) images of the galaxies, we present a novel morphology-based method for determining trail vectors. We study the surface brightness profiles and curvature of the candidates and compare the results obtained with two analysis packages, morfometryka and iraf/ellipse on retrieving information of the irregular structures present in the galaxies. Our morphometric analysis shows that the ram-pressure stripping candidates have peculiar concave regions in their surface brightness profiles. Therefore, these profiles are less concentrated (lower Sérsic indices) than other star-forming galaxies that do not show morphological features of ram-pressure stripping. In combination with morphometric trail vectors, this feature could both help identify galaxies undergoing ram-pressure stripping and reveal spatial variations in the star formation rate.


2020 ◽  
Vol 500 (3) ◽  
pp. 3123-3141
Author(s):  
Swagat R Das ◽  
Jessy Jose ◽  
Manash R Samal ◽  
Shaobo Zhang ◽  
Neelam Panwar

ABSTRACT The processes that regulate star formation within molecular clouds are still not well understood. Various star formation scaling relations have been proposed as an explanation, one of which is to formulate a relation between the star formation rate surface density $\rm \Sigma _{SFR}$ and the underlying gas surface density $\rm \Sigma _{gas}$. In this work, we test various star formation scaling relations, such as the Kennicutt–Schmidt relation, the volumetric star formation relation, the orbital time model, the crossing time model and the multi free-fall time-scale model, towards the North American Nebula and Pelican Nebula and in the cold clumps associated with them. Measuring stellar mass from young stellar objects and gaseous mass from CO measurements, we estimate the mean $\rm \Sigma _{SFR}$, the star formation rate per free-fall time and the star formation efficiency for clumps to be 1.5 $\rm M_{\odot}\, yr^{-1}\, kpc^{-2}$, 0.009 and 2.0 per cent, respectively, while for the whole region covered by both nebulae (which we call the ‘NAN’ complex) the values are 0.6 $\rm M_{\odot}\, yr^{-1}\, kpc^{-2}$, 0.0003 and 1.6 per cent, respectively. For the clumps, we notice that the observed properties are in line with the correlation obtained between $\rm \Sigma _{SFR}$ and $\rm \Sigma _{gas}$, and between $\rm \Sigma _{SFR}$ and $\rm \Sigma _{gas}$ per free-fall time and orbital time for Galactic clouds. At the same time, we do not observe any correlation with $\rm \Sigma _{gas}$ per crossing time and multi free-fall time. Even though we see correlations in the former cases, however, all models agree with each other within a factor of 0.5 dex. It is not possible to discriminate between these models because of the current uncertainties in the input observables. We also test the variation of $\rm \Sigma _{SFR}$ with the dense gas but, because of low statistics, a weak correlation is seen in our analysis.


Sign in / Sign up

Export Citation Format

Share Document