The Influence of Boundaries on Gravity Currents and Thin Films: Drainage, Confinement, Convergence, and Deformation Effects

2022 ◽  
Vol 54 (1) ◽  
pp. 27-56
Author(s):  
Zhong Zheng ◽  
Howard A. Stone

Thin film flows, whether driven by gravity, surface tension, or the relaxation of elastic boundaries, occur in many natural and industrial processes. Applications span problems of oil and gas transport in channels to hydraulic fracture, subsurface propagation of pollutants, storage of supercritical CO2 in porous formations, and flow in elastic Hele–Shaw configurations and their relatives. We review the influence of boundaries on the dynamics of thin film flows, with a focus on gravity currents, including the effects of drainage into the substrate, and the role of the boundaries to confine the flow, force its convergence to a focus, or deform, and thus feedback to alter the flow. In particular, we highlight reduced-order models. In many cases, self-similar solutions can be determined and describe the behaviors in canonical problems at different timescales and length scales, including self-similar solutions of both the first and second kind. Additionally, the time transitions between different solutions are summarized. Where possible, remarks about various applications are provided.

2019 ◽  
Vol 492 (2) ◽  
pp. 1770-1777
Author(s):  
Maryam Ghasemnezhad

ABSTRACT To study the role of Hall effect on the structure of accretion disc, we have considered a toroidal magnetic field in our paper. To study the vertical structure of the disc, we have written a set of magnetohydrodynamic (MHD) equations in the spherical coordinates (r, θ, ϕ) based on the two assumptions of axisymmetric and steady state. Also, we employed the self-similar solutions in the radial direction to obtain the structure of the disc in the θ-direction. We have solved a set of ordinary differential equations in the θ-coordinate with symmetrical boundary conditions in the equatorial plane. In order to describe the behaviour of Hall effect, we introduced the ΛH parameter that was called the dimensionless Hall Elsasser number. The strength of the Hall effect is measured by the inverse of dimensionless Hall Elsasser number. We have shown that the strong Hall effect decreases the accretion rate or infall velocity and size of inflow part. It has also been found the Hall effect is maximum in the equatorial plane and gets the value close to zero near the boundary, and it has the antidiffusive nature. The results display that the strong Hall effect makes the standard accretion sub-Keplerian disc becomes thinner. Our solutions have shown the Hall effect leads to transport magnetic flux outward in the upper layer of the disc and it produces outflows in the surface of the disc.


2015 ◽  
Vol 778 ◽  
pp. 669-690 ◽  
Author(s):  
Zhong Zheng ◽  
Sangwoo Shin ◽  
Howard A. Stone

We study the propagation of viscous gravity currents along a thin permeable substrate where slow vertical drainage is allowed from the boundary. In particular, we report the effect of this vertical fluid drainage on the second-kind self-similar solutions for the shape of the fluid–fluid interface in three contexts: (i) viscous axisymmetric gravity currents converging towards the centre of a cylindrical container; (ii) viscous gravity currents moving towards the origin in a horizontal Hele-Shaw channel with a power-law varying gap thickness in the horizontal direction; and (iii) viscous gravity currents propagating towards the origin of a porous medium with horizontal permeability and porosity gradients in power-law forms. For each of these cases with vertical leakage, we identify a regime diagram that characterizes whether the front reaches the origin or not; in particular, when the front does not reach the origin, we calculate the final location of the front. We have also conducted laboratory experiments with a cylindrical lock gate to generate a converging viscous gravity current where vertical fluid drainage is allowed from various perforated horizontal substrates. The time-dependent position of the propagating front is captured from the experiments, and the front position is found to agree well with the theoretical and numerical predictions when surface tension effects can be neglected.


1990 ◽  
Vol 210 ◽  
pp. 155-182 ◽  
Author(s):  
Julio Gratton ◽  
Fernando Minotti

A theoretical model for the spreading of viscous gravity currents over a rigid horizontal surface is derived, based on a lubrication theory approximation. The complete family of self-similar solutions of the governing equations is investigated by means of a phase-plane formalism developed in analogy to that of gas dynamics. The currents are represented by integral curves in the plane of two phase variables, Z and V, which are related to the depth and the average horizontal velocity of the fluid. Each integral curve corresponds to a certain self-similar viscous gravity current satisfying a particular set of initial and/or boundary conditions, and is obtained by solving a first-order ordinary differential equation of the form dV/dZ = f(Z, V), where f is a rational function. All conceivable self-similar currents can thus be obtained. A detailed analysis of the properties of the integral curves is presented, and asymptotic formulae describing the behaviour of the physical quantities near the singularities of the phase plane corresponding to sources, sinks, and current fronts are given. The derivation of self-similar solutions from the formalism is illustrated by several examples which include, in addition to the similarity flows studied by other authors, many other novel ones such as the extension to viscous flows of the classical problem of the breaking of a dam, the flows over plates with borders, as well as others. A self-similar solution of the second kind describing the axisymmetric collapse of a current towards the origin is obtained. The scaling laws for these flows are derived. Steady flows and progressive wave solutions are also studied and their connection to self-similar flows is discussed. The mathematical analogy between viscous gravity currents and other physical phenomena such as nonlinear heat conduction, nonlinear diffusion, and ground water motion is commented on.


2014 ◽  
Vol 747 ◽  
pp. 218-246 ◽  
Author(s):  
Zhong Zheng ◽  
Ivan C. Christov ◽  
Howard A. Stone

AbstractWe report experimental, theoretical and numerical results on the effects of horizontal heterogeneities on the propagation of viscous gravity currents. We use two geometries to highlight these effects: (a) a horizontal channel (or crack) whose gap thickness varies as a power-law function of the streamwise coordinate; (b) a heterogeneous porous medium whose permeability and porosity have power-law variations. We demonstrate that two types of self-similar behaviours emerge as a result of horizontal heterogeneity: (a) a first-kind self-similar solution is found using dimensional analysis (scaling) for viscous gravity currents that propagate away from the origin (a point of zero permeability); (b) a second-kind self-similar solution is found using a phase-plane analysis for viscous gravity currents that propagate toward the origin. These theoretical predictions, obtained using the ideas of self-similar intermediate asymptotics, are compared with experimental results and numerical solutions of the governing partial differential equation developed under the lubrication approximation. All three results are found to be in good agreement.


2018 ◽  
Vol 30 (2) ◽  
pp. 358-399
Author(s):  
M. BOWEN ◽  
T. P. WITELSKI

We investigate self-similar sign-changing solutions to the thin-film equation, ht = −(|h|nhxxx)x, on the semi-infinite domain x ≥ 0 with zero-pressure-type boundary conditions h = hxx = 0 imposed at the origin. In particular, we identify classes of first- and second-kind compactly supported self-similar solutions (with a free-boundary x = s(t) = Ltβ) and consider how these solutions depend on the mobility exponent n; multiple solutions can exist with the same number of sign changes. For n = 0, we also construct first-kind self-similar solutions on the entire half-line x ≥ 0 and show that they act as limiting cases for sequences of compactly supported solutions in the limit of infinitely many sign changes. In addition, at n = 1, we highlight accumulation point-like behaviour of sign-changes local to the moving interface x = s(t). We conclude with a numerical investigation of solutions to the full time-dependent partial differential equation (based on a non-local regularisation of the mobility coefficient) and discuss the computational results in relation to the self-similar solutions.


2011 ◽  
Vol 22 (3) ◽  
pp. 245-265 ◽  
Author(s):  
J. D. EVANS ◽  
V. A. GALAKTIONOV

We discuss the fourth-order thin film equation with a stable second-order diffusion term, in the context of a standard free-boundary problem with zero height, zero contact angle and zero-flux conditions imposed at an interface. For the first critical exponent where N ≥ 1 is the space dimension, there are continuous sets (branches) of source-type very singular self-similar solutions of the form For p ≠ p0, the set of very singular self-similar solutions is shown to be finite and consists of a countable family of branches (in the parameter p) of similarity profiles that originate at a sequence of critical exponents {pl, l ≥ 0}. At p = pl, these branches appear via a non-linear bifurcation mechanism from a countable set of second kind similarity solutions of the pure thin film equation Such solutions are detected by a combination of linear and non-linear ‘Hermitian spectral theory’, which allows the application of an analytical n-branching approach. In order to connect with the Cauchy problem in Part I, we identify the cauchy problem solutions as suitable ‘limits’ of the free-boundary problem solutions.


Symmetry ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 394
Author(s):  
Alexander B. Kukushkin ◽  
Andrei A. Kulichenko ◽  
Vladislav S. Neverov ◽  
Petr A. Sdvizhenskii ◽  
Alexander V. Sokolov ◽  
...  

Radiative transfer (RT) in spectral lines in plasmas and gases under complete redistribution of the photon frequency in the emission-absorption act is known as a superdiffusion transport characterized by the irreducibility of the integral (in the space coordinates) equation for the atomic excitation density to a diffusion-type differential equation. The dominant role of distant rare flights (Lévy flights, introduced by Mandelbrot for trajectories generated by the Lévy stable distribution) is well known and is used to construct approximate analytic solutions in the theory of stationary RT (the escape probability method is the best example). In the theory of nonstationary RT, progress based on similar principles has been made recently. This includes approximate self-similar solutions for the Green’s function (i) at an infinite velocity of carriers (no retardation effects) to cover the Biberman–Holstein equation for various spectral line shapes; (ii) for a finite fixed velocity of carriers to cover a wide class of superdiffusion equations dominated by Lévy walks with rests; (iii) verification of the accuracy of above solutions by comparison with direct numerical solutions obtained using distributed computing. The article provides an overview of the above results with an emphasis on the role of distant rare flights in the discovery of nonstationary self-similar solutions.


1999 ◽  
Vol 11 (9) ◽  
pp. 2443-2445 ◽  
Author(s):  
Thomas P. Witelski ◽  
Andrew J. Bernoff

Sign in / Sign up

Export Citation Format

Share Document