scholarly journals Kernel phase imaging with VLT/NACO: high-contrast detection of new candidate low-mass stellar companions at the diffraction limit

2019 ◽  
Vol 486 (1) ◽  
pp. 639-654 ◽  
Author(s):  
Jens Kammerer ◽  
Michael J Ireland ◽  
Frantz Martinache ◽  
Julien H Girard
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Richard B. Banati ◽  
Paul Wilcox ◽  
Ran Xu ◽  
Grace Yin ◽  
Emily Si ◽  
...  

An amendment to this paper has been published and can be accessed via a link at the top of the paper.


2011 ◽  
Vol 743 (2) ◽  
pp. 178 ◽  
Author(s):  
B. Mennesson ◽  
C. Hanot ◽  
E. Serabyn ◽  
K. Liewer ◽  
S. R. Martin ◽  
...  

2020 ◽  
Vol 636 ◽  
pp. A72
Author(s):  
Frantz Martinache ◽  
Alban Ceau ◽  
Romain Laugier ◽  
Jens Kammerer ◽  
Mamadou N’Diaye ◽  
...  

Context. Kernel phase is a data analysis method based on a generalization of the notion of closure phase, which was invented in the context of interferometry, but it applies to well corrected diffraction dominated images produced by an arbitrary aperture. The linear model upon which it relies theoretically leads to the formation of observable quantities robust against residual aberrations. Aims. In practice, the detection limits that have been reported thus far seem to be dominated by systematic errors induced by calibration biases that were not sufficiently filtered out by the kernel projection operator. This paper focuses on the impact the initial modeling of the aperture has on these errors and introduces a strategy to mitigate them, using a more accurate aperture transmission model. Methods. The paper first uses idealized monochromatic simulations of a nontrivial aperture to illustrate the impact modeling choices have on calibration errors. It then applies the outlined prescription to two distinct data sets of images whose analysis has previously been published. Results. The use of a transmission model to describe the aperture results is a significant improvement over the previous type of analysis. The thus reprocessed data sets generally lead to more accurate results, which are less affected by systematic errors. Conclusions. As kernel-phase observing programs are becoming more ambitious, accuracy in the aperture description is becoming paramount to avoid situations where contrast detection limits are dominated by systematic errors. The prescriptions outlined in this paper will benefit from any attempt at exploiting kernel phase for high-contrast detection.


2020 ◽  
Vol 640 ◽  
pp. A15
Author(s):  
A. Rainot ◽  
M. Reggiani ◽  
H. Sana ◽  
J. Bodensteiner ◽  
C. A. Gomez-Gonzalez ◽  
...  

Context. Massive stars like company. However, low-mass companions have remained extremely difficult to detect at angular separations (ρ) smaller than 1″ (approx. 1000–3000 au, considering the typical distance to nearby massive stars) given the large brightness contrast between the companion and the central star. Constraints on the low-mass end of the companions mass-function for massive stars are needed, however, for helping, for example, to distinguish among the various scenarios that describe the formation of massive stars. Aims. With the aim of obtaining a statistically significant constraint on the presence of low-mass companions beyond the typical detection limit of current surveys (Δmag ≲ 5 at ρ ≲ 1″), we initiated a survey of O and Wolf-Rayet stars in the Carina region using the Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE) coronagraphic instrument on the Very Large Telescope (VLT). In this, the first paper of the series, we aim to introduce the survey, to present the methodology and to demonstrate the capability of SPHERE for massive stars using the multiple system QZ Car. Methods. We obtained VLT-SPHERE snapshot observations in the IRDIFS_EXT mode, which combines the IFS and IRDIS sub-systems and simultaneously provides us four-dimensional (4D) data cubes in two different fields-of-view: 1.73″ × 1.73″ for IFS (39 spectral channels across the YJH bands) and 12″ × 12″ for IRDIS (two spectral channels across the K band). Angular- and spectral-differential imaging techniques as well as PSF-fitting were applied to detect and measure the relative flux of the companions in each spectral channel. The latter were then flux-calibrated using theoretical SED models of the central object and compared to a grid of ATLAS9 atmosphere model and (pre-)main-sequence evolutionary tracks, providing a first estimate of the physical properties of the detected companions. Results. Detection limits of 9 mag at ρ >  200 mas for IFS, and as faint as 13 mag at ρ > 1.​″8 for IRDIS (corresponding to sub-solar masses for potential companions), can be reached in snapshot observations of only a few minutes integration times, allowing us to detect 19 sources around the QZ Car system. All but two are reported here for the first time. With near-IR magnitude contrasts in the range of 4 to 7.5 mag, the three brightest sources (Ab, Ad, and E) are most likely to be physically bound. They have masses in the range of 2 to 12 M⊙ and are potentially co-eval with QZ Car central system. The remaining sources have flux contrast of 1.5 × 105 to 9.5 × 106 (ΔK ≈ 11 to 13 mag). Their presence can be explained by the local source density and they are, thus, likely to be chance alignments. If they were members of the Carina nebula, they would be sub-solar-mass pre-main sequence stars. Conclusions. Based on this proof of concept, we show that the VLT/SPHERE allows us to reach the sub-solar mass regime of the companion mass function. It paves the way for this type of observation with a large sample of massive stars to provide novel constraints on the multiplicity of massive stars in a region of the parameter space that has remained inaccessible so far.


2018 ◽  
Vol 6 (21) ◽  
pp. 1800582 ◽  
Author(s):  
Jeeyoon Jeong ◽  
Hyeong Seok Yun ◽  
Dasom Kim ◽  
Kang Sup Lee ◽  
Han-Kyu Choi ◽  
...  

2019 ◽  
Vol 25 (S2) ◽  
pp. 6-7 ◽  
Author(s):  
David A. Muller ◽  
Zhen Chen ◽  
Yi Jiang ◽  
Michal Odstrcil ◽  
Yimo Han ◽  
...  

2020 ◽  
Vol 642 ◽  
pp. A119
Author(s):  
C. Ginski ◽  
F. Ménard ◽  
Ch. Rab ◽  
E. E. Mamajek ◽  
R. G. van Holstein ◽  
...  

Context. To understand the formation of planetary systems, it is important to understand the initial conditions of planet formation, that is, the young gas-rich planet forming disks. Spatially resolved, high-contrast observations are of particular interest since substructures in disks that are linked to planet formation can be detected. In addition, we have the opportunity to reveal close companions or even planets in formation that are embedded in the disk. Aims. In this study, we present the first results of the Disk Evolution Study Through Imaging of Nearby Young Stars (DESTINYS), an ESO/SPHERE large program that is aimed at studying disk evolution in scattered light, mainly focusing on a sample of low-mass stars (< 1 M⊙) in nearby (∼200 pc) star-forming regions. In this particular study, we present observations of the ET Cha (RECX 15) system, a nearby “old” classical T Tauri star (5−8 Myr, ∼100 pc), which is still strongly accreting. Methods. We used SPHERE/IRDIS in the H-band polarimetric imaging mode to obtain high spatial resolution and high-contrast images of the ET Cha system to search for scattered light from the circumstellar disk as well as thermal emission from close companions. We additionally employed VLT/NACO total intensity archival data of the system taken in 2003. Results. Here, we report the discovery, using SPHERE/IRDIS, of a low-mass (sub)stellar companion to the η Cha cluster member ET Cha. We estimate the mass of this new companion based on photometry. Depending on the system age, it is either a 5 Myr, 50 MJup brown dwarf or an 8 Myr, 0.10 M⊙ M-type, pre-main-sequence star. We explore possible orbital solutions and discuss the recent dynamic history of the system. Conclusions. Independent of the precise companion mass, we find that the presence of the companion likely explains the small size of the disk around ET Cha. The small separation of the binary pair indicates that the disk around the primary component is likely clearing from the outside in, which explains the high accretion rate of the system.


Sign in / Sign up

Export Citation Format

Share Document