scholarly journals The search for magnetic fields in two Wolf–Rayet stars and the discovery of a variable magnetic field in WR 55

2020 ◽  
Vol 499 (1) ◽  
pp. L116-L120
Author(s):  
S Hubrig ◽  
M Schöller ◽  
A Cikota ◽  
S P Järvinen

ABSTRACT Magnetic fields in Wolf–Rayet (WR) stars are not well explored, although there is indirect evidence, e.g. from spectral variability and X-ray emission, that magnetic fields should be present in these stars. Being in an advanced stage of their evolution, WR stars have lost their hydrogen envelope, but their dense winds make the stellar core almost unobservable. To substantiate the expectations on the presence of magnetic fields in the most-evolved massive stars, we selected two WR stars, WR 46 and WR 55, for the search of the presence of magnetic fields using FORS 2 spectropolarimetric observations. We achieve a formally definite detection of a variable mean longitudinal magnetic field of the order of a few hundred gauss in WR 55. The field detection in this star, which is associated with the ring nebula RCW 78 and the molecular environment, is of exceptional importance for our understanding of star formation. No field detection at a significance level of 3σ was achieved for WR 46, but the variability of the measured field strengths can be rather well phased with the rotation period of 15.5 h previously suggested by FUSE(Far Ultraviolet Spectroscopic Explorer) observations.

2012 ◽  
Vol 8 (S294) ◽  
pp. 225-236
Author(s):  
M. Hanasz ◽  
D. Woltanski ◽  
K. Kowalik

AbstractWe review recent developments of amplification models of galactic and intergalactic magnetic field. The most popular scenarios involve variety of physical mechanisms, including turbulence generation on a wide range of physical scales, effects of supernovae, buoyancy as well as the magnetorotational instability. Other models rely on galaxy interaction, which generate galactic and intergalactic magnetic fields during galaxy mergers. We present also global galactic-scale numerical models of the Cosmic Ray (CR) driven dynamo, which was originally proposed by Parker (1992). We conduct a series of direct CR+MHD numerical simulations of the dynamics of the interstellar medium (ISM), composed of gas, magnetic fields and CR components. We take into account CRs accelerated in randomly distributed supernova (SN) remnants, and assume that SNe deposit small-scale, randomly oriented, dipolar magnetic fields into the ISM. The amplification timescale of the large-scale magnetic field resulting from the CR-driven dynamo is comparable to the galactic rotation period. The process efficiently converts small-scale magnetic fields of SN-remnants into galactic-scale magnetic fields. The resulting magnetic field structure resembles the X-shaped magnetic fields observed in edge-on galaxies.


2019 ◽  
Vol 491 (3) ◽  
pp. 3155-3164 ◽  
Author(s):  
Bidya Binay Karak ◽  
Aparna Tomar ◽  
Vindya Vashishth

ABSTRACT Simulations of magnetohydrodynamics convection in slowly rotating stars predict antisolar differential rotation (DR) in which the equator rotates slower than poles. This antisolar DR in the usual αΩ dynamo model does not produce polarity reversal. Thus, the features of large-scale magnetic fields in slowly rotating stars are expected to be different than stars having solar-like DR. In this study, we perform mean-field kinematic dynamo modelling of different stars at different rotation periods. We consider antisolar DR for the stars having rotation period larger than 30 d and solar-like DR otherwise. We show that with particular α profiles, the dynamo model produces magnetic cycles with polarity reversals even with the antisolar DR provided, the DR is quenched when the toroidal field grows considerably high and there is a sufficiently strong α for the generation of toroidal field. Due to the antisolar DR, the model produces an abrupt increase of magnetic field exactly when the DR profile is changed from solar-like to antisolar. This enhancement of magnetic field is in good agreement with the stellar observational data as well as some global convection simulations. In the solar-like DR branch, with the decreasing rotation period, we find the magnetic field strength increases while the cycle period shortens. Both of these trends are in general agreement with observations. Our study provides additional support for the possible existence of antisolar DR in slowly rotating stars and the presence of unusually enhanced magnetic fields and possibly cycles that are prone to production of superflare.


1991 ◽  
Vol 05 (29) ◽  
pp. 1919-1924 ◽  
Author(s):  
M.J. TAHMASEBI ◽  
Y. SOBOUTI

A spin system in a time variable magnetic field is considered. For certain fields there exists a frame in which the Hamiltonian becomes static. The criterion for such fields is derived. The unitary transformation that accomplishes this task is obtained and the underlying Schrodinger equation is solved exactly.


1971 ◽  
Vol 43 ◽  
pp. 547-568 ◽  
Author(s):  
Gordon Newkirk

The general properties of large scale solar magnetic fields are reviewed. In order of size these are: (1) Active region, generally bipolar fields with a lifetime of about two solar rotations. These are characterized by fields of several hundred G and display differential rotation similar to that found for the photosphere. (2) UM regions which appear to be the remnants of active region fields dispersed by the action of supergranulation convection and distorted by differential rotation. These are characterized by fields of a few tens of gauss and have lifetimes of several solar rotations. (3) The polar fields which are built up over the solar cycle by the preferential migration of a given polarity towards the poles. The poloidal fields are of a few gauss in magnitude and reverse sign in about 22 yr. (4) The large scale sector fields. These appear closely related to the interplanetary sector structure, cover tens of degrees in longitude, and stretch across the equator with the same polarity. This pattern endures for periods of up to a year or more, is not distorted by differential rotation, and has a rotation period of about 27 days. The presence of these long enduring sector fields may be related to the phenomenon of active solar longitudes. The consequences of large scale fields are examined with particular emphasis on the effects displayed by the corona. Calculated magnetic field patterns in the corona are compared with the density structure of the corona with the conclusion that: (1) Small scale structures in the corona, such as rays, arches, and loops, reflect the shape of the field and appear as magnetic tubes of force preferentially filled with more coronal plasma than the background. (2) Coronal density enhancements appear over plages where the field strength and presumably the mechanical energy transport into the corona are higher than normal. (3) Coronal streamers form above the ‘neutral line’ between extended UM regions of opposite polarity. The role played by coronal magnetic fields in transient events is also discussed. Some examples are: (1) The location of Proton Flares in open, diverging configurations of the field. (2) The expulsion of ‘magnetic bottles’ into the interplanetary medium by solar flares. (3) The relation of Type IV radio bursts to the ambient field configuration. (4) The guiding of Type II burst exciters by the ambient magnetic field. (5) The magnetic connection between widely separated active regions which display correlated radio bursts.


2010 ◽  
Vol 6 (S274) ◽  
pp. 355-360 ◽  
Author(s):  
M. Hanasz ◽  
D. Wóltanski ◽  
K. Kowalik ◽  
H. Kotarba

AbstractWe present recent developments of global galactic-scale numerical models of the Cosmic Ray (CR) driven dynamo, which was originally proposed by Parker (1992). We conduct a series of direct CR+MHD numerical simulations of the dynamics of the interstellar medium (ISM), composed of gas, magnetic fields and CR components. We take into account CRs accelerated in randomly distributed supernova (SN) remnants, and assume that SNe deposit small-scale, randomly oriented, dipolar magnetic fields into the ISM. The amplification timescale of the large-scale magnetic field resulting from the CR-driven dynamo is comparable to the galactic rotation period. The process efficiently converts small-scale magnetic fields of SN-remnants into galactic-scale magnetic fields. The resulting magnetic field structure resembles the X-shaped magnetic fields observed in edge-on galaxies.


2010 ◽  
Vol 6 (S273) ◽  
pp. 181-187
Author(s):  
J. Morin ◽  
J.-F. Donati ◽  
P. Petit ◽  
L. Albert ◽  
M. Auriére ◽  
...  

AbstractMagnetic fields of cool stars can be directly investigated through the study of the Zeeman effect on photospheric spectral lines using several approaches. With spectroscopic measurement in unpolarised light, the total magnetic flux averaged over the stellar disc can be derived but very little information on the field geometry is available. Spectropolarimetry provides a complementary information on the large-scale magnetic topology. With Zeeman-Doppler Imaging (ZDI), this information can be retrieved to produce a map of the vector magnetic field at the surface of the star, and in particular to assess the relative importance of the poloidal and toroidal components as well as the degree of axisymmetry of the field distribution.The development of high-performance spectropolarimeters associated with multi-lines techniques and ZDI allows us to explore magnetic topologies throughout the Hertzsprung-Russel diagram, on stars spanning a wide range of mass, age and rotation period. These observations bring novel constraints on magnetic field generation by dynamo effect in cool stars. In particular, the study of solar twins brings new insight on the impact of rotation on the solar dynamo, whereas the detection of strong and stable dipolar magnetic fields on fully convective stars questions the precise role of the tachocline in this process.


2019 ◽  
Vol 6 (2) ◽  
pp. 53-61
Author(s):  
Rochmah Agustrina ◽  
Berekhya Glori Hernawati ◽  
Yulianty Yulianty ◽  
Bambang Irawan

Magnetic fields are proven to improve the quality of growth of various plants. In the study, it was examined whether the treatment of magnetic fields on chili seeds (Capsicum annuum. L) infected by Fusarium sp. could maintain plant growth to the generative phase. This research is two-factor research using a randomized block design. The first factor is the 0.2 mT magnetic field induction treatment consisting of 7 minutes 48 seconds (M7), 15 minutes 36 seconds (M15) and control (M0) as control and the second factor is the Fusarium oxysporum infection treatment consisting of 60 minutes infected (F60) and not infected (F0). Each treatment unit was repeated 5 times. Data obtained were analyzed for variance at a 5% significance level. The results of the analysis showed that the treatments in this study did not provide significant differences in carbohydrate content, flowering speed and number of flowers, as well as the fruiting rate of plants from seeds infected with Fusarium sp (M0F60, M7, F60, and M15F60), thus the magnetic field treatment could be causing plants to be resistant to Fusarium sp. so plants from seeds infected with Fusarium sp. able to flower and bear fruit at the same speed and produce the same amount of interest.


1994 ◽  
Vol 144 ◽  
pp. 559-564
Author(s):  
P. Ambrož ◽  
J. Sýkora

AbstractWe were successful in observing the solar corona during five solar eclipses (1973-1991). For the eclipse days the coronal magnetic field was calculated by extrapolation from the photosphere. Comparison of the observed and calculated coronal structures is carried out and some peculiarities of this comparison, related to the different phases of the solar cycle, are presented.


1994 ◽  
Vol 144 ◽  
pp. 21-28 ◽  
Author(s):  
G. B. Gelfreikh

AbstractA review of methods of measuring magnetic fields in the solar corona using spectral-polarization observations at microwaves with high spatial resolution is presented. The methods are based on the theory of thermal bremsstrahlung, thermal cyclotron emission, propagation of radio waves in quasi-transverse magnetic field and Faraday rotation of the plane of polarization. The most explicit program of measurements of magnetic fields in the atmosphere of solar active regions has been carried out using radio observations performed on the large reflector radio telescope of the Russian Academy of Sciences — RATAN-600. This proved possible due to good wavelength coverage, multichannel spectrographs observations and high sensitivity to polarization of the instrument. Besides direct measurements of the strength of the magnetic fields in some cases the peculiar parameters of radio sources, such as very steep spectra and high brightness temperatures provide some information on a very complicated local structure of the coronal magnetic field. Of special interest are the results found from combined RATAN-600 and large antennas of aperture synthesis (VLA and WSRT), the latter giving more detailed information on twodimensional structure of radio sources. The bulk of the data obtained allows us to investigate themagnetospheresof the solar active regions as the space in the solar corona where the structures and physical processes are controlled both by the photospheric/underphotospheric currents and surrounding “quiet” corona.


Sign in / Sign up

Export Citation Format

Share Document