scholarly journals AGN in dwarf galaxies: frequency, triggering processes and the plausibility of AGN feedback

2019 ◽  
Vol 489 (1) ◽  
pp. L12-L16 ◽  
Author(s):  
Sugata Kaviraj ◽  
Garreth Martin ◽  
Joseph Silk

Abstract While active galactic nuclei (AGN) are considered to be key drivers of the evolution of massive galaxies, their potentially significant role in the dwarf-galaxy regime (M* < 109 M⊙) remains largely unexplored. We combine optical and infrared data, from the Hyper Suprime-Cam (HSC) and the Wide-field Infrared Explorer, respectively, to explore the properties of ∼800 AGN in dwarfs at low redshift (z < 0.3). Infrared-selected AGN fractions are ∼10–30 per cent in dwarfs, which, for reasonable duty cycles, indicates a high black hole (BH)-occupation fraction. Visual inspection of the deep HSC images indicates that the merger fraction in dwarf AGN (∼6 per cent) shows no excess compared to a control sample of non-AGN, suggesting that the AGN-triggering processes are secular in nature. Energetic arguments indicate that, in both dwarfs and massive galaxies, bolometric AGN luminosities (LAGN) are significantly greater than supernova luminosities (LSN). LAGN/LSN is, in fact, higher in dwarfs, with predictions from simulations suggesting that this ratio only increases with redshift. Together with the potentially high BH-occupation fraction, this suggests that if AGN feedback is an important driver of massive-galaxy evolution, the same is likely to be true in the dwarf regime, contrary to our classical thinking.

2020 ◽  
Vol 634 ◽  
pp. A50 ◽  
Author(s):  
M. Poulain ◽  
M. Paolillo ◽  
D. De Cicco ◽  
W. N. Brandt ◽  
F. E. Bauer ◽  
...  

Context. Variability has proven to be a powerful tool to detect active galactic nuclei (AGN) in multi-epoch surveys. The new-generation facilities expected to become operational in the next few years will mark a new era in time-domain astronomy and their wide-field multi-epoch campaigns will favor extensive variability studies. Aims. We present our analysis of AGN variability in the second half of the VST survey of the Wide Chandra Deep Field South, performed in the r band and covering a 2 sq. deg area. The analysis complements a previous work, in which the first half of the area was investigated. We provide a reliable catalog of variable AGN candidates, which will be critical targets in future variability studies. Methods. We selected a sample of optically variable sources and made use of infrared data from the Spitzer mission to validate their nature by means of color-based diagnostics. Results. We obtain a sample of 782 AGN candidates among which 12 are classified as supernovae, 54 as stars, and 232 as AGN. We estimate a contamination ≲20% and a completeness ∼38% with respect to mid-infrared selected samples.


2004 ◽  
Vol 21 (2) ◽  
pp. 188-191 ◽  
Author(s):  
R. Spurzem ◽  
P. Berczik ◽  
G. Hensler ◽  
Ch. Theis ◽  
P. Amaro-Seoane ◽  
...  

AbstractWe first present a recently developed three-dimensional chemodynamic code for galaxy evolution from the Kiev–Kiel collaboration. It follows the evolution of all components of a galaxy, such as dark matter, stars, molecular clouds and diffuse interstellar matter. Dark matter and stars are treated as collisionless N-body systems. The interstellar matter is numerically described by a smoothed particle hydrodynamics approach for the diffuse (hot) gas and a sticky particle scheme for the (cool) molecular clouds. Physical processes, such as star formation, stellar death, or condensation and evaporation processes of clouds interacting with the ISM are described locally. An example application of the model to a star forming dwarf galaxy will be shown for comparison with other codes. Secondly, we will discuss new kinds of exotic chemodynamic processes, as they occur in dense gas–star systems in galactic nuclei, such as non-standard ‘drag’-force interactions, destructive and gas-producing stellar collisions. Their implementation in one-dimensional dynamic models of galactic nuclei is presented. Future prospects to generalise these to three dimensions are in progress and will be discussed.


2020 ◽  
Vol 501 (2) ◽  
pp. 1852-1867
Author(s):  
Rebecca J Mayes ◽  
Michael J Drinkwater ◽  
Joel Pfeffer ◽  
Holger Baumgardt ◽  
Chengze Liu ◽  
...  

ABSTRACT We use the hydrodynamical EAGLE simulation to predict the numbers, masses, and radial distributions of tidally stripped galaxy nuclei in massive galaxy clusters, and compare these results to observations of ultracompact dwarf galaxies (UCDs) in the Virgo cluster. We trace the merger trees of galaxies in massive galaxy clusters back in time and determine the numbers and masses of stripped nuclei from galaxies disrupted in mergers. The spatial distribution of stripped nuclei in the simulations is consistent with those of UCDs surrounding massive galaxies in the Virgo cluster. Additionally, the numbers of stripped nuclei are consistent with the numbers of M > 107 M⊙ UCDs around individual galaxies and in the Virgo cluster as a whole. The mass distributions in this mass range are also consistent. We find that the numbers of stripped nuclei surrounding individual galaxies correlate better with the stellar or halo mass of individual galaxies than the total cluster mass. We conclude that most high mass (M > 107 M⊙) UCDs are likely stripped nuclei. It is difficult to draw reliable conclusions about low mass (M < 107 M⊙) UCDs because of observational selection effects. We additionally predict that a few hundred stripped nuclei below a mass of 2 × 106 M⊙ should exist in massive galaxies that will overlap in mass with the globular cluster population. Approximately 1–3 stripped nuclei in the process of forming also exist per massive galaxy.


2020 ◽  
Vol 494 (2) ◽  
pp. 1784-1816
Author(s):  
D Asmus ◽  
C L Greenwell ◽  
P Gandhi ◽  
P G Boorman ◽  
J Aird ◽  
...  

ABSTRACT To answer major questions on supermassive black hole (SMBH) and galaxy evolution, a complete census of SMBH growth, i.e. active galactic nuclei (AGN), is required. Thanks to all-sky surveys by the Wide-field Infrared Survey Explorer (WISE) and the Spectrum-Roentgen-Gamma (SRG) missions, this task is now feasible in the nearby Universe. We present a new survey, the Local AGN Survey (LASr), with the goal of identifying AGN unbiased against obscuration and determining the intrinsic Compton-thick (CT) fraction. We construct the most complete all-sky galaxy sample within 100 Mpc ($90{{\ \rm per\ cent}}$ completeness for log (M*/M⊙) ∼ 9.4), four times deeper than the current reference, the Two Micron All-Sky Survey Redshift Survey (2MRS), which misses ${\sim}20{{\ \rm per\ cent}}$ of known luminous AGN. These 49k galaxies serve as parent sample for LASr, called LASr-GPS. It contains 4.3k already known AGN, $\ge 82{{\ \rm per\ cent}}$ of these are estimated to have $L^\mathrm{nuc}(12\, \mu \mathrm{m})\lt 10^{42.3}$ erg s−1, i.e. are low-luminosity AGN. As a first method for identifying Seyfert-like AGN, we use WISE-based infrared colours, finding 221 galaxies at $L^\mathrm{nuc}(12\, \mu \mathrm{m})\ge 10^{42.3}$ erg s−1 to host an AGN at $90{{\ \rm per\ cent}}$ reliability. This includes 61 new AGN candidates and implies an optical type 2 fraction of 50–71 per cent. We quantify the efficiency of this technique and estimate the total number of AGN with $L^\mathrm{int}(\rm {2-10\,keV})\ge 10^{42}$ erg s−1 in the volume to be $362^{+145}_{-116}$ ($8.6^{+3.5}_{-2.8}\, \times$ 10−5 Mpc−3). X-ray brightness estimates indicate the CT fraction to be 40–55 per cent to explain the Swift non-detections of the infrared selected objects. One third of the AGN within 100 Mpc remain to be identified, and we discuss the prospects for the eROSITA all-sky survey to detect them.


2019 ◽  
Vol 622 ◽  
pp. A13 ◽  
Author(s):  
V. H. Mahatma ◽  
M. J. Hardcastle ◽  
W. L. Williams ◽  
P. N. Best ◽  
J. H. Croston ◽  
...  

Context. Double-double radio galaxies (DDRGs) represent a short but unique phase in the life-cycle of some of the most powerful radio-loud active galactic nuclei (RLAGN). These galaxies display large-scale remnant radio plasma in the intergalactic medium left behind by a past episode of active galactic nuclei (AGN) activity, and meanwhile, the radio jets have restarted in a new episode. The knowledge of what causes the jets to switch off and restart is crucial to our understanding of galaxy evolution, while it is important to know if DDRGs form a host galaxy dichotomy relative to RLAGN. Aims. The sensitivity and field of view of LOFAR enables the observation of DDRGs on a population basis rather than single-source observations. Using statistical comparisons with a control sample of RLAGN, we may obtain insights into the nature of DDRGs in the context of their host galaxies, where physical differences in their hosts compared to RLAGN as a population may allow us to infer the conditions that drive restarting jets. Methods. We utilised the LOFAR Two-Metre Sky Survey (LoTSS) DR1, using a visual identification method to compile a sample of morphologically selected candidate DDRGs, showing two pairs of radio lobes. To confirm the restarted nature in each of the candidate sources, we obtained follow-up observations with the Karl. G. Jansky Very Large Array (VLA) at higher resolution to observe the inner lobes or restarted jets, the confirmation of which created a robust sample of 33 DDRGs. We created a comparison sample of 777 RLAGN, matching the luminosity distribution of the DDRG sample, and compared the optical and infrared magnitudes and colours of their host galaxies. Results. We find that there is no statistically significant difference in the brightness of the host galaxies between double-doubles and single-cycle RLAGN. The DDRG and RLAGN samples also have similar distributions in WISE mid-infrared colours, indicating similar ages of stellar populations and dust levels in the hosts of DDRGs. We conclude that DDRGs and “normal” RLAGN are hosted by galaxies of the same type, and that DDRG activity is simply a normal part of the life cycle of RLAGN. Restarted jets, particularly for the class of low-excitation radio galaxies, rather than being a product of a particular event in the life of a host galaxy, must instead be caused by smaller scale changes, such as in the accretion system surrounding the black hole.


2018 ◽  
Vol 617 ◽  
pp. A81 ◽  
Author(s):  
G. Vietri ◽  
E. Piconcelli ◽  
M. Bischetti ◽  
F. Duras ◽  
S. Martocchia ◽  
...  

Winds accelerated by active galactic nuclei (AGNs) are invoked in the most successful models of galaxy evolution to explain the observed physical and evolutionary properties of massive galaxies. Winds are expected to deposit energy and momentum into the interstellar medium (ISM), thus regulating both star formation and supermassive black hole (SMBH) growth. We undertook a multiband observing program aimed at obtaining a complete census of winds in a sample of WISE/SDSS selected hyper-luminous (WISSH) quasars (QSOs) at z ≈ 2–4. We analyzed the rest-frame optical (i.e. LBT/LUCI and VLT/SINFONI) and UV (i.e. SDSS) spectra of 18 randomly selected WISSH QSOs to measure the SMBH mass and study the properties of winds both in the narrow line region (NLR) and broad line region (BLR) traced by blueshifted or skewed [OIII] and CIV emission lines, respectively. These WISSH QSOs are powered by SMBH with masses ≳109 M⊙ accreting at 0.4 < λEdd < 3.1. We found the existence of two subpopulations of hyper-luminous QSOs characterized by the presence of outflows at different distances from the SMBH. One population (i.e. [OIII] sources) exhibits powerful [OIII] outflows, a rest-frame equivalent width (REW) of the CIV emission REWCIV ≈ 20–40 Å, and modest CIV velocity shift (vCIVpeak) with respect to the systemic redshift (vCIVpeak <~ 2000 km s−1). The second population (i.e. Weak [OIII] sources), representing ~70% of the analyzed WISSH QSOs, shows weak or absent [OIII] emission and an extremely large blueshifted CIV emission (vCIVpeak up to ~8000 km s−1 and REWCIV <~ 20 Å). We propose two explanations for the observed behavior of the strength of the [OIII] emission in terms of the orientation effects of the line of sight and ionization cone. The dichotomy in the presence of BLR and NLR winds could be likely due to inclination effects considering a polar geometry scenario for the BLR winds. In a few cases these winds are remarkably as powerful as those revealed in the NLR in the [OIII] QSOs (Ėkin ~ 1044−45 erg s−1). We also investigated the dependence of these CIV winds on fundamental AGN parameters such as bolometric luminosity (LBol), Eddington ratio (λEdd), and UV-to-X-ray continuum slope (αOX). We found a strong correlation with LBol and an anti-correlation with αOX whereby the higher the luminosity, the steeper the ionizing continuum described by means of αOX and the larger the blueshift of the CIV emission line. Finally, the observed dependence vCIVpeak ∝ LBol0.28 ± 0.04 is consistent with a radiatively-driven-winds scenario, where a strong UV continuum is necessary to launch the wind and a weakness of the X-rayemission is fundamental to prevent overionization of the wind itself.


2020 ◽  
Vol 501 (1) ◽  
pp. 269-280
Author(s):  
Xuheng Ding ◽  
Tommaso Treu ◽  
Simon Birrer ◽  
Adriano Agnello ◽  
Dominique Sluse ◽  
...  

ABSTRACT One of the main challenges in using high-redshift active galactic nuclei (AGNs) to study the correlations between the mass of a supermassive black hole ($\mathcal {M}_{\rm BH}$) and the properties of its active host galaxy is instrumental resolution. Strong lensing magnification effectively increases instrumental resolution and thus helps to address this challenge. In this work, we study eight strongly lensed AGNs with deep Hubble Space Telescope imaging, using the lens modelling code lenstronomy to reconstruct the image of the source. Using the reconstructed brightness of the host galaxy, we infer the host galaxy stellar mass based on stellar population models. $\mathcal {M}_{\rm BH}$ are estimated from broad emission lines using standard methods. Our results are in good agreement with recent work based on non-lensed AGNs, demonstrating the potential of using strongly lensed AGNs to extend the study of the correlations to higher redshifts. At the moment, the sample size of lensed AGNs is small and thus they provide mostly a consistency check on systematic errors related to resolution for non-lensed AGNs. However, the number of known lensed AGNs is expected to increase dramatically in the next few years, through dedicated searches in ground- and space-based wide-field surveys, and they may become a key diagnostic of black holes and galaxy co-evolution.


2020 ◽  
Vol 15 (S359) ◽  
pp. 136-140
Author(s):  
Minju M. Lee ◽  
Ichi Tanaka ◽  
Rohei Kawabe

AbstractWe present studies of a protocluster at z =2.5, an overdense region found close to a radio galaxy, 4C 23.56, using ALMA. We observed 1.1 mm continuum, two CO lines (CO (4–3) and CO (3–2)) and the lower atomic carbon line transition ([CI](3P1-3P0)) at a few kpc (0″.3-0″.9) resolution. The primary targets are 25 star-forming galaxies selected as Hα emitters (HAEs) that are identified with a narrow band filter. These are massive galaxies with stellar masses of > 1010Mʘ that are mostly on the galaxy main sequence at z =2.5. We measure the molecular gas mass from the independent gas tracers of 1.1 mm, CO (3–2) and [CI], and investigate the gas kinematics of galaxies from CO (4–3). Molecular gas masses from the different measurements are consistent with each other for detection, with a gas fraction (fgas = Mgas/(Mgas+ Mstar)) of ≃ 0.5 on average but with a caveat. On the other hand, the CO line widths of the protocluster galaxies are typically broader by ˜50% compared to field galaxies, which can be attributed to more frequent, unresolved gas-rich mergers and/or smaller sizes than field galaxies, supported by our high-resolution images and a kinematic model fit of one of the galaxies. We discuss the expected scenario of galaxy evolution in protoclusters at high redshift but future large surveys are needed to get a more general view.


2004 ◽  
Vol 217 ◽  
pp. 220-221
Author(s):  
L. Verdes-Montenegro ◽  
J. Sulentic ◽  
D. Espada ◽  
S. Leon ◽  
U. Lisenfeld ◽  
...  

We are constructing the first complete unbiased control sample of the most isolated galaxies of the northern sky to serve as a template in the study of star formation and galaxy evolution in denser environments. Our goal is to compare and quantify the properties of different phases of the interstellar medium in this sample, as well as the level of star formation, both relevant parameters in the internal evolution of galaxies and strongly conditioned by the environment. To achieve this goal we are building a multiwavelength database for this sample to compare and quantify the properties of different phases of the ISM.


Author(s):  
L. Spinoglio ◽  
A. Alonso-Herrero ◽  
L. Armus ◽  
M. Baes ◽  
J. Bernard-Salas ◽  
...  

AbstractIR spectroscopy in the range 12–230 μm with the SPace IR telescope for Cosmology and Astrophysics (SPICA) will reveal the physical processes governing the formation and evolution of galaxies and black holes through cosmic time, bridging the gap between the James Webb Space Telescope and the upcoming Extremely Large Telescopes at shorter wavelengths and the Atacama Large Millimeter Array at longer wavelengths. The SPICA, with its 2.5-m telescope actively cooled to below 8 K, will obtain the first spectroscopic determination, in the mid-IR rest-frame, of both the star-formation rate and black hole accretion rate histories of galaxies, reaching lookback times of 12 Gyr, for large statistically significant samples. Densities, temperatures, radiation fields, and gas-phase metallicities will be measured in dust-obscured galaxies and active galactic nuclei, sampling a large range in mass and luminosity, from faint local dwarf galaxies to luminous quasars in the distant Universe. Active galactic nuclei and starburst feedback and feeding mechanisms in distant galaxies will be uncovered through detailed measurements of molecular and atomic line profiles. The SPICA’s large-area deep spectrophotometric surveys will provide mid-IR spectra and continuum fluxes for unbiased samples of tens of thousands of galaxies, out to redshifts of z ~ 6.


Sign in / Sign up

Export Citation Format

Share Document