scholarly journals Galaxy Evolution Studies with the SPace IR Telescope for Cosmology and Astrophysics (SPICA): The Power of IR Spectroscopy

Author(s):  
L. Spinoglio ◽  
A. Alonso-Herrero ◽  
L. Armus ◽  
M. Baes ◽  
J. Bernard-Salas ◽  
...  

AbstractIR spectroscopy in the range 12–230 μm with the SPace IR telescope for Cosmology and Astrophysics (SPICA) will reveal the physical processes governing the formation and evolution of galaxies and black holes through cosmic time, bridging the gap between the James Webb Space Telescope and the upcoming Extremely Large Telescopes at shorter wavelengths and the Atacama Large Millimeter Array at longer wavelengths. The SPICA, with its 2.5-m telescope actively cooled to below 8 K, will obtain the first spectroscopic determination, in the mid-IR rest-frame, of both the star-formation rate and black hole accretion rate histories of galaxies, reaching lookback times of 12 Gyr, for large statistically significant samples. Densities, temperatures, radiation fields, and gas-phase metallicities will be measured in dust-obscured galaxies and active galactic nuclei, sampling a large range in mass and luminosity, from faint local dwarf galaxies to luminous quasars in the distant Universe. Active galactic nuclei and starburst feedback and feeding mechanisms in distant galaxies will be uncovered through detailed measurements of molecular and atomic line profiles. The SPICA’s large-area deep spectrophotometric surveys will provide mid-IR spectra and continuum fluxes for unbiased samples of tens of thousands of galaxies, out to redshifts of z ~ 6.

2011 ◽  
Vol 7 (S284) ◽  
pp. 183-192
Author(s):  
Q. Daniel Wang

AbstractGalactic X-ray emission is a manifestation of various high-energy phenomena and processes. The brightest X-ray sources are typically accretion-powered objects: active galactic nuclei and low- or high-mass X-ray binaries. Such objects with X-ray luminosities of ≳ 1037 ergs s−1 can now be detected individually in nearby galaxies. The contributions from fainter discrete sources (including cataclysmic variables, active binaries, young stellar objects, and supernova remnants) are well correlated with the star formation rate or stellar mass of galaxies. The study of discrete X-ray sources is essential to our understanding of stellar evolution, dynamics, and end-products as well as accretion physics. With the subtraction of the discrete source contributions, one can further map out truly diffuse X-ray emission, which can be used to trace the feedback from active galactic nuclei, as well as from stars, both young and old, in the form of stellar winds and supernovae. The X-ray emission efficiency, however, is only about 1% of the energy input rate of the stellar feedback alone. The bulk of the feedback energy is most likely gone with outflows into large-scale galactic halos. Much is yet to be investigated to comprehend the role of such outflows in regulating the ecosystem, hence the evolution of galaxies. Even the mechanism of the diffuse X-ray emission remains quite uncertain. A substantial fraction of the emission cannot arise directly from optically-thin thermal plasma, as commonly assumed, and most likely originates in its charge exchange with neutral gas. These uncertainties underscore our poor understanding of the feedback and its interplay with the galaxy evolution.


2020 ◽  
Vol 496 (3) ◽  
pp. 3943-3960
Author(s):  
Fabio Fontanot ◽  
Gabriella De Lucia ◽  
Michaela Hirschmann ◽  
Lizhi Xie ◽  
Pierluigi Monaco ◽  
...  

ABSTRACT We present a new implementation of the GAlaxy Evolution and Assembly (gaea) semi-analytic model, that features an improved modelling of the process of cold gas accretion on to supermassive black hole (SMBHs), derived from both analytic arguments and high-resolution simulations. We consider different scenarios for the loss of angular momentum required for the available cold gas to be accreted on to the central SMBHs, and we compare different combinations of triggering mechanisms, including galaxy mergers and disc instabilities in star-forming discs. We compare our predictions with the luminosity function (LF) observed for active galactic nuclei (AGNs) and we confirm that a non-instantaneous accretion time-scale (either in the form of a low-angular momentum reservoir or as an assumed light-curve evolution) is needed in order to reproduce the measured evolution of the AGN-LF and the so-called AGN-downsizing trend. Moreover, we also study the impact of AGN feedback, in the form of AGN-driven outflows, on the SF properties of model galaxies, using prescriptions derived both from empirical studies and from numerical experiments. We show that AGN-driven outflows are effective in suppressing the residual star formation rate in massive galaxies (>1011 M⊙) without changing their overall assembly history. These winds also affect the SFR of lower mass galaxies, resulting in a too large fraction of passive galaxies at <1010 M⊙. Finally, we study the Eddington ratio distribution as a function of SMBH mass, showing that only objects more massive than 108 M⊙ are already in a self-regulated state as inferred from observations.


2020 ◽  
Vol 500 (2) ◽  
pp. 2127-2145
Author(s):  
Christopher C Lovell ◽  
Aswin P Vijayan ◽  
Peter A Thomas ◽  
Stephen M Wilkins ◽  
David J Barnes ◽  
...  

ABSTRACT We introduce the First Light And Reionisation Epoch Simulations (FLARES), a suite of zoom simulations using the EAGLE model. We resimulate a range of overdensities during the Epoch of Reionization (EoR) in order to build composite distribution functions, as well as explore the environmental dependence of galaxy formation and evolution during this critical period of galaxy assembly. The regions are selected from a large $(3.2 \, \mathrm{cGpc})^{3}$ parent volume, based on their overdensity within a sphere of radius 14 h−1 cMpc. We then resimulate with full hydrodynamics, and employ a novel weighting scheme that allows the construction of composite distribution functions that are representative of the full parent volume. This significantly extends the dynamic range compared to smaller volume periodic simulations. We present an analysis of the galaxy stellar mass function (GSMF), the star formation rate distribution function (SFRF), and the star-forming sequence (SFS) predicted by FLARES, and compare to a number of observational and model constraints. We also analyse the environmental dependence over an unprecedented range of overdensity. Both the GSMF and the SFRF exhibit a clear double-Schechter form, up to the highest redshifts (z = 10). We also find no environmental dependence of the SFS normalization. The increased dynamic range probed by FLARES will allow us to make predictions for a number of large area surveys that will probe the EoR in coming years, carried out on new observatories such as Roman and Euclid.


2015 ◽  
Vol 11 (A29B) ◽  
pp. 197-198
Author(s):  
Andrew J. Bunker

AbstractI discuss stellar populations in galaxies at high redshift (z > 6), in particular the blue rest-frame UV colours which have been detected in recent years through near-IR imaging with HST. These spectral slopes of β < −2 are much more blue than star-forming galaxies at lower redshift, and may suggest less dust obscuration, lower metallicity or perhaps a different initial mass function. I describe current work on the luminosity function of high redshift star- forming galaxies, the evolution of the fraction of strong Lyman-α emitters in this population, and the contribution of the ionizing photon budget from such galaxies towards the reionization of the Universe. I also describe constraints placed by Spitzer/IRAC on stellar populations in galaxies within the first billion years, and look towards future developments in spectroscopy with Extremely Large Telescopes and the James Webb Space Telescope, including the JWST/NIRSpec GTO programme on galaxy evolution at high redshift.


2020 ◽  
Vol 58 (1) ◽  
pp. 661-725 ◽  
Author(s):  
Natascha M. Förster Schreiber ◽  
Stijn Wuyts

Ever deeper and wider look-back surveys have led to a fairly robust outline of the cosmic star-formation history, which culminated around [Formula: see text]; this period is often nicknamed “cosmic noon.” Our knowledge about star-forming galaxies at these epochs has dramatically advanced from increasingly complete population censuses and detailed views of individual galaxies. We highlight some of the key observational insights that influenced our current understanding of galaxy evolution in the equilibrium growth picture: ▪  Scaling relations between galaxy properties are fairly well established among massive galaxies at least out to [Formula: see text], pointing to regulating mechanisms already acting on galaxy growth. ▪  Resolved views reveal that gravitational instabilities and efficient secular processes within the gas- and baryon-rich galaxies at [Formula: see text] play an important role in the early buildup of galactic structure. ▪  Ever more sensitive observations of kinematics at [Formula: see text] are probing the baryon and dark matter budget on galactic scales and the links between star-forming galaxies and their likely descendants. ▪  Toward higher masses, massive bulges, dense cores, and powerful AGNs and AGN-driven outflows are more prevalent and likely play a role in quenching star formation. We outline emerging questions and exciting prospects for the next decade with upcoming instrumentation, including the James Webb Space Telescope and the next generation of extremely large telescopes.


2015 ◽  
Vol 806 (1) ◽  
pp. 144 ◽  
Author(s):  
M. Ackermann ◽  
M. Ajello ◽  
A. Allafort ◽  
E. Antolini ◽  
W. B. Atwood ◽  
...  

2019 ◽  
Vol 632 ◽  
pp. A88
Author(s):  
V. Allevato ◽  
A. Viitanen ◽  
A. Finoguenov ◽  
F. Civano ◽  
H. Suh ◽  
...  

Aims. We perform clustering measurements of 800 X-ray selected Chandra COSMOS Legacy (CCL) Type 2 active galactic nuclei (AGN) with known spectroscopic redshift to probe the halo mass dependence on AGN host galaxy properties, such as galaxy stellar mass Mstar, star formation rate (SFR), and specific black hole accretion rate (BHAR; λBHAR) in the redshift range z = [0−3]. Methods. We split the sample of AGN with known spectroscopic redshits according to Mstar, SFR and λBHAR, while matching the distributions in terms of the other parameters, including redshift. We measured the projected two-point correlation function wp(rp) and modeled the clustering signal, for the different subsamples, with the two-halo term to derive the large-scale bias b and corresponding typical mass of the hosting halo. Results. We find no significant dependence of the large-scale bias and typical halo mass on galaxy stellar mass and specific BHAR for CCL Type 2 AGN at mean z ∼ 1, while a negative dependence on SFR is observed, i.e. lower SFR AGN reside in richer environment. Mock catalogs of AGN, matched to have the same X-ray luminosity, stellar mass, λBHAR, and SFR of CCL Type 2 AGN, almost reproduce the observed Mstar − Mh, λBHAR − Mh and SFR–Mh relations, when assuming a fraction of satellite AGN fAGNsat ∼ 0.15. This corresponds to a ratio of the probabilities of satellite to central AGN of being active Q ∼ 2. Mock matched normal galaxies follow a slightly steeper Mstar − Mh relation, in which low mass mock galaxies reside in less massive halos than mock AGN of similar mass. Moreover, matched mock normal galaxies are less biased than mock AGN with similar specific BHAR and SFR, at least for Q >  1.


2020 ◽  
Vol 499 (1) ◽  
pp. 653-658
Author(s):  
Pankaj Kushwaha ◽  
Arkadipta Sarkar ◽  
Alok C Gupta ◽  
Ashutosh Tripathi ◽  
Paul J Wiita

ABSTRACT We report the detection of a probable γ-ray quasi-periodic oscillation (QPO) of around 314 d in the monthly binned 0.1–300 GeV γ-ray Fermi-Large Area Telescope light curve of the well-known BL Lacertae blazar OJ 287. To identify and quantify the QPO nature of the γ-ray light curve of OJ 287, we used the Lomb–Scargle periodogram (LSP), REDFIT, and weighted wavelet Z-transform (WWZ) analyses. We briefly discuss possible emission models for radio-loud active galactic nuclei that can explain a γ-ray QPO of such a period in a blazar.


2018 ◽  
Vol 14 (A30) ◽  
pp. 78-81
Author(s):  
Kristina Nyland

AbstractEnergetic feedback by Active Galactic Nuclei (AGN) plays an important evolutionary role in the regulation of star formation (SF) on galactic scales. However, the effects of this feedback as a function of redshift and galaxy properties such as mass, environment and cold gas content remain poorly understood. The broad frequency coverage (1 to 116 GHz), high collecting area (about ten times higher than the Karl G. Jansky Very Large Array), and superb angular resolution (maximum baselines of at least a few hundred km) of the proposed next-generation Very Large Array (ngVLA) are uniquely poised to revolutionize our understanding of AGN and their role in galaxy evolution.


Sign in / Sign up

Export Citation Format

Share Document