scholarly journals Physical Processes in Star–Gas Systems

2004 ◽  
Vol 21 (2) ◽  
pp. 188-191 ◽  
Author(s):  
R. Spurzem ◽  
P. Berczik ◽  
G. Hensler ◽  
Ch. Theis ◽  
P. Amaro-Seoane ◽  
...  

AbstractWe first present a recently developed three-dimensional chemodynamic code for galaxy evolution from the Kiev–Kiel collaboration. It follows the evolution of all components of a galaxy, such as dark matter, stars, molecular clouds and diffuse interstellar matter. Dark matter and stars are treated as collisionless N-body systems. The interstellar matter is numerically described by a smoothed particle hydrodynamics approach for the diffuse (hot) gas and a sticky particle scheme for the (cool) molecular clouds. Physical processes, such as star formation, stellar death, or condensation and evaporation processes of clouds interacting with the ISM are described locally. An example application of the model to a star forming dwarf galaxy will be shown for comparison with other codes. Secondly, we will discuss new kinds of exotic chemodynamic processes, as they occur in dense gas–star systems in galactic nuclei, such as non-standard ‘drag’-force interactions, destructive and gas-producing stellar collisions. Their implementation in one-dimensional dynamic models of galactic nuclei is presented. Future prospects to generalise these to three dimensions are in progress and will be discussed.

2019 ◽  
Vol 489 (1) ◽  
pp. L12-L16 ◽  
Author(s):  
Sugata Kaviraj ◽  
Garreth Martin ◽  
Joseph Silk

Abstract While active galactic nuclei (AGN) are considered to be key drivers of the evolution of massive galaxies, their potentially significant role in the dwarf-galaxy regime (M* < 109 M⊙) remains largely unexplored. We combine optical and infrared data, from the Hyper Suprime-Cam (HSC) and the Wide-field Infrared Explorer, respectively, to explore the properties of ∼800 AGN in dwarfs at low redshift (z < 0.3). Infrared-selected AGN fractions are ∼10–30 per cent in dwarfs, which, for reasonable duty cycles, indicates a high black hole (BH)-occupation fraction. Visual inspection of the deep HSC images indicates that the merger fraction in dwarf AGN (∼6 per cent) shows no excess compared to a control sample of non-AGN, suggesting that the AGN-triggering processes are secular in nature. Energetic arguments indicate that, in both dwarfs and massive galaxies, bolometric AGN luminosities (LAGN) are significantly greater than supernova luminosities (LSN). LAGN/LSN is, in fact, higher in dwarfs, with predictions from simulations suggesting that this ratio only increases with redshift. Together with the potentially high BH-occupation fraction, this suggests that if AGN feedback is an important driver of massive-galaxy evolution, the same is likely to be true in the dwarf regime, contrary to our classical thinking.


2020 ◽  
Vol 492 (3) ◽  
pp. 4268-4282 ◽  
Author(s):  
Adam Soussana ◽  
Nora Elisa Chisari ◽  
Sandrine Codis ◽  
Ricarda S Beckmann ◽  
Yohan Dubois ◽  
...  

ABSTRACT The intrinsic correlations of galaxy shapes and orientations across the large-scale structure of the Universe are a known contaminant to weak gravitational lensing. They are known to be dependent on galaxy properties, such as their mass and morphologies. The complex interplay between alignments and the physical processes that drive galaxy evolution remains vastly unexplored. We assess the sensitivity of intrinsic alignments (shapes and angular momenta) to active galactic nuclei (AGN) feedback by comparing galaxy alignment in twin runs of the cosmological hydrodynamical Horizon simulation, which do and do not include AGN feedback, respectively. We measure intrinsic alignments in three dimensions and in projection at $z$ = 0 and $z$ = 1. We find that the projected alignment signal of all galaxies with resolved shapes with respect to the density field in the simulation is robust to AGN feedback, thus giving similar predictions for contamination to weak lensing. The relative alignment of galaxy shapes around galaxy positions is however significantly impacted, especially when considering high-mass ellipsoids. Using a sample of galaxy ‘twins’ across simulations, we determine that AGN changes both the galaxy selection and their actual alignments. Finally, we measure the alignments of angular momenta of galaxies with their nearest filament. Overall, these are more significant in the presence of AGN as a result of the higher abundance of massive pressure-supported galaxies.


2014 ◽  
Vol 2014 ◽  
pp. 1-30 ◽  
Author(s):  
Simone Recchi

In this review I give a summary of the state of the art for what concerns the chemo-dynamical numerical modelling of galaxies in general and of dwarf galaxies in particular. In particular, I focus my attention on (i) initial conditions, (ii) the equations to solve; (iii) the star formation process in galaxies, (iv) the initial mass function, (v) the chemical feedback, (vi) the mechanical feedback, (vii) the environmental effects. Moreover, some key results concerning the development of galactic winds in galaxies and the fate of heavy elements, freshly synthesised after an episode of star formation, have been reported. At the end of this review, I summarise the topics and physical processes, relevant to the evolution of galaxies, that in my opinion are not properly treated in modern computer simulations of galaxies and that deserve more attention in the future.


2019 ◽  
Vol 28 (1) ◽  
pp. 213-219
Author(s):  
Elena Shablovinskaya ◽  
Viktor Afanasiev

Abstract Due to the compactness active galactic nuclei (AGN) are still unresolved with optical observations. However, structure and physical conditions of the matter in their central parts are especially important to study the processes of the matter accretion to supermassive black holes and eventually these investigations are essential to understand the galaxy evolution. Polarization contains information about the interaction of electromagnetic waves with the environment and provides information about the physical processes in the central regions of the AGNs that could not be found with the help of other optical observations. In this paper the importance of applying polarimetry methods to the study of geometry, kinematics, and physical processes in AGN in polarized light is discussed. An overview of the mechanisms of polarization formation, their connection with different structures and scales are provided. Also, we overview the polarimetric investigations based on different assumptions that are done using the observations conducted in Special Astrophysical Observatory of Russian Academy of Sciences.


Author(s):  
J. A. Eades ◽  
A. E. Smith ◽  
D. F. Lynch

It is quite simple (in the transmission electron microscope) to obtain convergent-beam patterns from the surface of a bulk crystal. The beam is focussed onto the surface at near grazing incidence (figure 1) and if the surface is flat the appropriate pattern is obtained in the diffraction plane (figure 2). Such patterns are potentially valuable for the characterization of surfaces just as normal convergent-beam patterns are valuable for the characterization of crystals.There are, however, several important ways in which reflection diffraction from surfaces differs from the more familiar electron diffraction in transmission.GeometryIn reflection diffraction, because of the surface, it is not possible to describe the specimen as periodic in three dimensions, nor is it possible to associate diffraction with a conventional three-dimensional reciprocal lattice.


1997 ◽  
Vol 84 (1) ◽  
pp. 176-178
Author(s):  
Frank O'Brien

The author's population density index ( PDI) model is extended to three-dimensional distributions. A derived formula is presented that allows for the calculation of the lower and upper bounds of density in three-dimensional space for any finite lattice.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Nima Afkhami-Jeddi ◽  
Henry Cohn ◽  
Thomas Hartman ◽  
Amirhossein Tajdini

Abstract We study the torus partition functions of free bosonic CFTs in two dimensions. Integrating over Narain moduli defines an ensemble-averaged free CFT. We calculate the averaged partition function and show that it can be reinterpreted as a sum over topologies in three dimensions. This result leads us to conjecture that an averaged free CFT in two dimensions is holographically dual to an exotic theory of three-dimensional gravity with U(1)c×U(1)c symmetry and a composite boundary graviton. Additionally, for small central charge c, we obtain general constraints on the spectral gap of free CFTs using the spinning modular bootstrap, construct examples of Narain compactifications with a large gap, and find an analytic bootstrap functional corresponding to a single self-dual boson.


2020 ◽  
Vol 501 (1) ◽  
pp. L71-L75
Author(s):  
Cornelius Rampf ◽  
Oliver Hahn

ABSTRACT Perturbation theory is an indispensable tool for studying the cosmic large-scale structure, and establishing its limits is therefore of utmost importance. One crucial limitation of perturbation theory is shell-crossing, which is the instance when cold-dark-matter trajectories intersect for the first time. We investigate Lagrangian perturbation theory (LPT) at very high orders in the vicinity of the first shell-crossing for random initial data in a realistic three-dimensional Universe. For this, we have numerically implemented the all-order recursion relations for the matter trajectories, from which the convergence of the LPT series at shell-crossing is established. Convergence studies performed at large orders reveal the nature of the convergence-limiting singularities. These singularities are not the well-known density singularities at shell-crossing but occur at later times when LPT already ceased to provide physically meaningful results.


2012 ◽  
Vol 696 ◽  
pp. 228-262 ◽  
Author(s):  
A. Kourmatzis ◽  
J. S. Shrimpton

AbstractThe fundamental mechanisms responsible for the creation of electrohydrodynamically driven roll structures in free electroconvection between two plates are analysed with reference to traditional Rayleigh–Bénard convection (RBC). Previously available knowledge limited to two dimensions is extended to three-dimensions, and a wide range of electric Reynolds numbers is analysed, extending into a fully inherently three-dimensional turbulent regime. Results reveal that structures appearing in three-dimensional electrohydrodynamics (EHD) are similar to those observed for RBC, and while two-dimensional EHD results bear some similarities with the three-dimensional results there are distinct differences. Analysis of two-point correlations and integral length scales show that full three-dimensional electroconvection is more chaotic than in two dimensions and this is also noted by qualitatively observing the roll structures that arise for both low (${\mathit{Re}}_{E} = 1$) and high electric Reynolds numbers (up to ${\mathit{Re}}_{E} = 120$). Furthermore, calculations of mean profiles and second-order moments along with energy budgets and spectra have examined the validity of neglecting the fluctuating electric field ${ E}_{i}^{\ensuremath{\prime} } $ in the Reynolds-averaged EHD equations and provide insight into the generation and transport mechanisms of turbulent EHD. Spectral and spatial data clearly indicate how fluctuating energy is transferred from electrical to hydrodynamic forms, on moving through the domain away from the charging electrode. It is shown that ${ E}_{i}^{\ensuremath{\prime} } $ is not negligible close to the walls and terms acting as sources and sinks in the turbulent kinetic energy, turbulent scalar flux and turbulent scalar variance equations are examined. Profiles of hydrodynamic terms in the budgets resemble those in the literature for RBC; however there are terms specific to EHD that are significant, indicating that the transfer of energy in EHD is also attributed to further electrodynamic terms and a strong coupling exists between the charge flux and variance, due to the ionic drift term.


Sign in / Sign up

Export Citation Format

Share Document