Heparin Fragments Induce Cervical Inflammation by Recruiting Immune Cells through Toll-like Receptor 4 in nonpregnant mice

Author(s):  
Anna Åkerud ◽  
Jakob Axelsson ◽  
Manisha Yadav ◽  
Jonas Erjefält ◽  
Gunvor Ekman-Ordeberg ◽  
...  

Abstract Inflammation is a hallmark in the human cervix remodelling. A possible candidate inducing the inflammatory driven ripening of the cervix is the matrix component heparan sulphate, which has been shown to be elevated in late pregnancy in the cervix and uterus. Heparin and a glycol-split low molecular weight heparin (gsHep) with low anticoagulant potency has been shown to enhance myometrial contraction and interleukin (IL)-8 production by cervical fibroblasts. The aim of this study was to investigate the mechanism by which heparin promotes cervical inflammation. Wild-type, Toll-like receptor 4 (TLR4), Myeloid differentiation primary response gene 88 n (MyD88) and Interferon regulatory factor 3 (IRF3)-deficient mice were treated by deposition of gsHep into the vaginas of nonpregnant mice. To identify which cells that responded to the heparin fragments, a rhodamine fluorescent construct of gsHep was used, which initially did bind to the epithelial cells and were at later time points located in the sub-mucosa. The heparin fragments induced a strong local inflammatory response in wild-type mice shown by a rapid infiltration of neutrophils and to a lesser extent macrophages into the epithelium and the underlying extracellular matrix (ECM) of the cervix. Further, a marked migration into the cervical and vaginal lumen was seen by both neutrophils and macrophages. The induced mucosal inflammation was strongly reduced in TLR4- and IRF3-deficient mice. In conclusion, our findings suggest that a TLR4/IRF3-mediated innate immune response in the cervical mucosa is induced by gsHep. This low anticoagulant heparin version, a novel TLR4 agonist, could contribute to human cervical ripening during the initiation of labour.

2012 ◽  
Vol 117 (2) ◽  
pp. 329-338 ◽  
Author(s):  
Willem-Jan M. Schellekens ◽  
Hieronymus W. H. van Hees ◽  
Michiel Vaneker ◽  
Marianne Linkels ◽  
P. N. Richard Dekhuijzen ◽  
...  

Background Mechanical ventilation induces diaphragm muscle atrophy, which plays a key role in difficult weaning from mechanical ventilation. The signaling pathways involved in ventilator-induced diaphragm atrophy are poorly understood. The current study investigated the role of Toll-like receptor 4 signaling in the development of ventilator-induced diaphragm atrophy. Methods Unventilated animals were selected for control: wild-type (n = 6) and Toll-like receptor 4 deficient mice (n = 6). Mechanical ventilation (8 h): wild-type (n = 8) and Toll-like receptor 4 deficient (n = 7) mice.Myosin heavy chain content, proinflammatory cytokines, proteolytic activity of the ubiquitin-proteasome pathway, caspase-3 activity, and autophagy were measured in the diaphragm. Results Mechanical ventilation reduced myosin content by approximately 50% in diaphragms of wild-type mice (P less than 0.05). In contrast, ventilation of Toll-like receptor 4 deficient mice did not significantly affect diaphragm myosin content. Likewise, mechanical ventilation significantly increased interleukin-6 and keratinocyte-derived chemokine in the diaphragm of wild-type mice, but not in ventilated Toll-like receptor 4 deficient mice. Mechanical ventilation increased diaphragmatic muscle atrophy factor box transcription in both wild-type and Toll-like receptor 4 deficient mice. Other components of the ubiquitin-proteasome pathway and caspase-3 activity were not affected by ventilation of either wild-type mice or Toll-like receptor 4 deficient mice. Mechanical ventilation induced autophagy in diaphragms of ventilated wild-type mice, but not Toll-like receptor 4 deficient mice. Conclusion Toll-like receptor 4 signaling plays an important role in the development of ventilator-induced diaphragm atrophy, most likely through increased expression of cytokines and activation of lysosomal autophagy.


Reproduction ◽  
2013 ◽  
Vol 145 (5) ◽  
pp. 517-526 ◽  
Author(s):  
Larry G Thaete ◽  
Xiao-Wu Qu ◽  
Tamas Jilling ◽  
Susan E Crawford ◽  
Philip Fitchev ◽  
...  

Our objective was to determine the role of toll-like receptor 4 (TLR4) in uterine ischemia/reperfusion (I/R)-induced fetal growth restriction (FGR). Pregnant TLR4-deficient and wild-type mice were subjected to I/R or a sham procedure. Fetal and placental weights were recorded and tissues were collected. Pep-1 (inhibits low-molecular-weight hyaluronan (LMW-HA) binding to TLR4) was used to determine whether LMW-HA–TLR4 interaction has a role in FGR. TLR4-deficient mice exhibited significantly lower baseline fetal weights compared with wild-type mice (P<0.05), along with extensive placental calcification that was not present in wild-type mice. Following I/R, fetal and placental weights were significantly reduced in wild-type (P<0.05) but not in TLR4-deficient mice. However, I/R increased fetal loss (P<0.05) only in TLR4-deficient mice. Corresponding with the reduced fetal weights, uterine myeloperoxidase activity increased in wild-type mice (P<0.001), indicating an inflammatory response, which was absent in TLR4-deficient mice. TLR4 was shown to have a regulatory role for two anti-inflammatory cytokines: interferon-B1 decreased only in wild-type mice (P<0.01) and interleukin-10 increased only in TLR4-deficient mice (P<0.001), in response to I/R. Pep-1 completely prevented I/R-induced FGR (P<0.001), indicating a potential role for the endogenous TLR4 ligand LMW-HA in I/R-induced FGR. In conclusion, uterine I/R in pregnancy produces FGR that is dependent on TLR4 and endogenous ligand(s), including breakdown products of HA. In addition, TLR4 may play a role in preventing pregnancy loss after uterine I/R.


2018 ◽  
Vol 315 (1) ◽  
pp. G128-G139 ◽  
Author(s):  
Xiumei Che ◽  
Ki Cheong Park ◽  
Soo Jung Park ◽  
You Hyun Kang ◽  
Hyun A Jin ◽  
...  

Triggering receptor expressed on myeloid cells 1 (TREM-1)-expressing intestinal macrophages are significantly increased in the colons of patients with inflammatory bowel disease (IBD). We focused here on the effects of guggulsterone on macrophage modulation in colitis as a potential therapeutic molecule in human IBD and explore the underlying mechanisms. Gene expression in macrophages was examined and wound-healing assay using HT-29 cells was performed. Colitis in wild-type and IL-10-, Toll-like receptor 4 (TLR4)-, and myeloid differentiation primary response 88 (MyD88)-deficient mice was induced via the administration of 2,4,6-trinitrobenzene sulfonic acid (TNBS) into the colon. In both in vitro and in vivo experiments, guggulsterone suppressed intestinal inflammation amplified by TREM-1 stimulation, in which the suppression of NF-κB, activating protein-1, and proteasome pathways was involved. In the TNBS-induced colitis model, guggulsterone reduced disease activity index scores and TREM-1 expression, stimulated IL-10 production, and improved survival in wild-type mice. These effects were not observed in IL-10-, TLR4-, and MyD88-deficient mice. Guggulsterone also suppressed M1 polarization, yet induced the M2 phenotype in macrophages from IBD patients as well as from mice. These findings indicate that guggulsterone blocks the hyperactivation of macrophages via TREM-1 suppression and induces M2 polarization via IL-10 mediated by the TLR4 signaling pathway. Furthermore, this study provides a new rationale for the therapeutic potential of guggulsterone in the treatment of IBD. NEW & NOTEWORTHY We found that guggulsterone attenuates triggering receptor expressed on myeloid cells 1 (TREM-1)-mediated hyperactivation of macrophages and polarizes macrophages toward the M2 phenotype. This was mediated by IL-10 and partly Toll-like receptor 4 signaling pathways. Overall, these data support that guggulsterone as a natural plant sterol modulates macrophage phenotypes in colitis, which may be of novel therapeutic importance in inflammatory bowel disease treatment.


2007 ◽  
Vol 75 (11) ◽  
pp. 5338-5345 ◽  
Author(s):  
Kee-Jong Hong ◽  
Jason R. Wickstrum ◽  
Hung-Wen Yeh ◽  
Michael J. Parmely

ABSTRACT The production of gamma interferon (IFN-γ) is a key step in the protective innate immune response to Francisella tularensis. Natural killer cells and T cells in the liver are important sources of this cytokine during primary F. tularensis infections, and interleukin-12 (IL-12) appears to be an essential coactivating cytokine for hepatic IFN-γ expression. The present study was undertaken to determine whether or not macrophages (Mφ) or dendritic cells (DC) provide coactivating signals for the liver IFN-γ response in vitro, whether IL-12 mediates these effects, and whether Toll-like receptor (TLR) signaling is essential to induce this costimulatory activity. Both bone marrow-derived Mφ and DC significantly augmented the IFN-γ response of F. tularensis-challenged liver lymphocytes in vitro. While both cell types produced IL-12p40 in response to F. tularensis challenge, only DC secreted large quantities of IL-12p70. DC from both IL-12p35-deficient and TLR2-deficient mice failed to produce IL-12p70 and did not costimulate liver lymphocytes for IFN-γ production in response to viable F. tularensis organisms. Conversely, liver lymphocytes from TLR2-deficient mice cocultured with wild-type accessory cells produced IFN-γ at levels comparable to those for wild-type hepatic lymphocytes. These findings indicate that TLR2 controls hepatic lymphocyte IFN-γ responses to F. tularensis by regulating DC IL-12 production. While Mφ also coinduced hepatic IFN-γ production in response to F. tularensis, they did so in a fashion less dependent on TLR2.


Aging ◽  
2017 ◽  
Vol 9 (9) ◽  
pp. 1971-1982 ◽  
Author(s):  
Amiya K. Ghosh ◽  
Martin O’Brien ◽  
Theresa Mau ◽  
Raymond Yung

Author(s):  
Mateus F. Rossato ◽  
Carin Hoffmeister ◽  
Gabriela Trevisan ◽  
Fabio Bezerra ◽  
Thiago M. Cunha ◽  
...  

AbstractObjectiveThe present study aimed to elucidate the mechanisms involved in MSU-induced IL-1β release in a rodent animal model of acute gout arthritis.MethodsPainful (mechanical and thermal hypersensitivity, ongoing pain and arthritis score) and inflammatory (oedema, plasma extravasation, cell infiltration and IL-1β release) parameters were assessed several hours after intra-articular injection of MSU (100 µg/articulation) in wild-type or knockout mice for Toll-like receptor 4 (TLR4), inducible nitric oxide synthase (iNOS), transient receptor potential (TRP) V1 and the IL-1 receptor (IL-1R). Also, wild-type animals were treated with clodronate, lipopolysaccharide from Rhodobacter sphaeroides (LPS-RS) (TLR4 antagonist), spleen tyrosine kinase (SYK) inhibitor (iSYK), aminoguanidine (AMG, an iNOS inhibitor) or SB366791 (TRPV1 antagonist). Nitrite/nitrate and IL-1β levels were measured on the synovial fluid of wild-type mice, 2 h after intra-articular MSU injections, or medium from macrophages stimulated for MSU (1000 μg) for 2 h.ResultsIntra-articular MSU injection caused robust nociception and severe inflammation from 2 up to 6 h after injection, which were prevented by the pre-treatment with clodronate, LPS-RS, iSYK, AMG and SB366791, or the genetic ablation of TLR4, iNOS, TRPV1 or IL-1R. MSU also increased nitrite/nitrate and IL-1β levels in the synovial fluid, which was prevented by clodronate, LPS-RS, iSYK and AMG, but not by SB366791. Similarly, MSU-stimulated peritoneal macrophages released nitric oxide, which was prevented by LPS-RS, iSYK and AMG, but not by SB366791, and released IL-1β, which was prevented by LPS-RS, iSYK, AMG and SB366791.ConclusionOur data indicate that MSU may activate TLR4, SYK, iNOS and TRPV1 to induce the release of IL-1β by macrophages, triggering nociception and inflammation during acute gout attack.


Sign in / Sign up

Export Citation Format

Share Document