scholarly journals Autonomous replication sequences in an extrachromosomal element of a pathogenicEntamoeba histolytica

1990 ◽  
Vol 18 (18) ◽  
pp. 5515-5519 ◽  
Author(s):  
J. Grodberg ◽  
N. Salazar ◽  
R. Oren ◽  
D. Mirelman
Genetics ◽  
1973 ◽  
Vol 74 (3) ◽  
pp. 477-487
Author(s):  
Sumio Minamori ◽  
Kinue Sugimoto

ABSTRACT [Delta b], symbolized as [δb], is retained by Sb chromosome lines and transmitted through the females to their progeny. Transmission through the males is not directly demonstrable (Minamori 1969a). [delta r], symbolized as [δr], is retained by Sr chromosome lines and transmitted biparentally (Minamori 1971). The multiplication of delta is suppressed at low temperature. All descendant lines derived from Sb-carrying or Sr-carrying flies in which the presence of delta cannot be demonstrated gradually accumulate their specific delta factors over many generations (Minamori 1969b, 1972). The delta factors and the sensitive chromosomes are inseparably associated. This observation led to the assumption that delta may be a copy of a chromosomal gene or a certain agent integrated into the chromosome (Minamori 1972). This assumption was examined in the present study by experiments designed to induce delta-retaining sensitive chromosomes, and to map the gene(s) responsible for delta-retention and/or for sensitivity to the killing action of delta factor. One sensitive chromosome which retained [δb] (Sb chromosome) was obtained in the presence of [δb] out of 2492 insensitive chromosomes which retained no delta; in addition one Sb chromosome was obtained in the presence of [δr] out of 2131 insensitives. The latter finding suggests that Sb might be induced by a mutation caused by [δb] or [δr], but not by integration of either delta into the chromosome. Four Sb chromosomes and one sensitive chromosome which retained [δr] (Sr chromosome) were obtained out of 1970 insensitives when males carrying the chromosome were fed an alkylating mutagen, ethyl methane sulfonate (EMS). The location of delta-retaining genes was examined by crossing-over experiments employing eight Sb and five Sr chromosomes. The genes on these chromosomes were found to be located in the same region or near one another. The gene for [δb], symbolized as Dab, and the gene for [δr], symbolized as Dar, are assumed to be multiple alleles of a locus at 2-24.9. The sensitivity of the chromosomes was modified appreciably by recombination; hence, the genes controlling this trait are assumed to be a polygenic system. The findings obtained in this study lead to the hypothesis that delta may be produced by a chromosomal gene (Da) and transmitted extrachromosomally.


Genetics ◽  
1989 ◽  
Vol 122 (4) ◽  
pp. 749-757
Author(s):  
R Sweeney ◽  
V A Zakian

Abstract The nib 1 allele of yeast confers a sensitivity to an endogenous plasmid, 2 mu DNA, in that nib 1 strains bearing 2 mu DNA (cir+) exhibit a reduction in division potential. In the present study, the reduction in division potential characteristic of nib 1 cir+ strains is shown to be dependent on the simultaneous presence of both the A and the D open reading frames of 2 mu DNA as well as on the presence of an unidentified extrachromosomal element other than 2 mu DNA. Furthermore, in nib 1 strains, an uncharacterized extrachromosomal element can cause a less severe reduction of division potential in the absence of intact 2 mu DNA. Thus, the nib 1 allele may confer a generalized sensitivity to extrachromosomal elements.


2010 ◽  
Vol 107 (43) ◽  
pp. 18551-18556 ◽  
Author(s):  
D. Gresham ◽  
R. Usaite ◽  
S. M. Germann ◽  
M. Lisby ◽  
D. Botstein ◽  
...  

1989 ◽  
Vol 9 (9) ◽  
pp. 3614-3620 ◽  
Author(s):  
S M Aldritt ◽  
J T Joseph ◽  
D F Wirth

We have identified a gene that encodes the polypeptide cytochrome b in the avian malarial parasite Plasmodium gallinaceum. The gene containing the open reading frame was found to be located on a 6.2-kilobase multimeric extrachromosomal element. The amino acid translation from this gene demonstrated significant similarities to cytochrome b sequences from yeast, mammal, and fungus genomes. We present evidence that the P. gallinaceum cytochrome b transcript is part of a larger primary transcript from the element that is subsequently processed. The message for P. gallinaceum cytochrome b was found to be 1.2 kilobases in size. This is the first report identifying a mitochondrial nucleic acid sequence in malaria-causing organisms and suggests that a functional cytochrome system may exist in these parasites.


2014 ◽  
Vol 81 (1) ◽  
pp. 166-176 ◽  
Author(s):  
Francesca Bottacini ◽  
Mary O'Connell Motherway ◽  
Eoghan Casey ◽  
Brian McDonnell ◽  
Jennifer Mahony ◽  
...  

ABSTRACTBifidobacterium breveis a common and sometimes very abundant inhabitant of the human gut. Genome sequencing ofB. breveJCM 7017 revealed the presence of an extrachromosomal element, designated pMP7017 consisting of >190 kb, thus representing the first reported bifidobacterial megaplasmid.In silicocharacterization of this element revealed several genomic features supporting a stable establishment of the megaplasmid in its host, illustrated by predicted CRISPR-Cas functions that are known to protect the host against intrusion of foreign DNA. Interestingly, pMP7017 is also predicted to encode a conjugative DNA transfer apparatus and, consistent with this notion, we demonstrate here the conjugal transfer of pMP7017 to representative strains ofB. breveandB. longumsubsp.longum. We also demonstrate the presence of a megaplasmid with homology to pMP7017 in threeB. longumsubsp.longumstrains.


1981 ◽  
Vol 1 (6) ◽  
pp. 535-543
Author(s):  
G B Kiss ◽  
A A Amin ◽  
R E Pearlman

Plasmids containing the nontranscribed central and terminal, but not the coding, regions of the extrachromosomal ribosomal deoxyribonucleic acid (rDNA) of Tetrahymena thermophila are capable of autonomous replication in Saccharomyces cerevisiae. These plasmids transform S. cerevisiae at high frequency; transformants are unstable in the absence of selection, and plasmids identical to those used for transformation were isolated from the transformed yeast cells. One plasmid contains a 1.85-kilobase Tetrahymena DNA fragment which includes the origin of bidirectional replication of the extrachromosomal rDNA. The other region of Tetrahymena rDNA allowing autonomous replication of plasmids in S. cerevisiae is a 650-base pair, adenine plus thymine-rich segment from the rDNA terminus. Neither of these Tetrahymena fragments shares obvious sequence homology with the origin of replication of the S. cerevisiae 2-microns circle plasmid or with ars1, an S. cerevisiae chromosomal replicator.


Author(s):  
Cristiana Amza ◽  
Jin Chen

2020 ◽  
Vol 6 (12) ◽  
Author(s):  
Alexander Bolotin ◽  
Benoit Quinquis ◽  
Hugo Roume ◽  
Michel Gohar ◽  
Didier Lereclus ◽  
...  

Bacillus thuringiensis serovar israelensis is the most widely used natural biopesticide against mosquito larvae worldwide. Its lineage has been actively studied and a plasmid-free strain, B . thuringiensis serovar israelensis BGSC 4Q7 (4Q7), has been produced. Previous sequencing of the genome of this strain has revealed the persistent presence of a 235 kb extrachromosomal element, pBtic235, which has been shown to be an inducible prophage, although three putative chromosomal prophages have been lost. Moreover, a 492 kb region, potentially including the standard replication terminus, has also been deleted in the 4Q7 strain, indicating an absence of essential genes in this area. We reanalysed the genome coverage distribution of reads for the previously sequenced variant strain, and sequenced two independently maintained samples of the 4Q7 strain. A 553 kb area, close to the 492 kb deletion, was found to be duplicated. This duplication presumably restored the equal sizes of the replichores, and a balanced functioning of replication termination. An analysis of genome assembly graphs revealed a transient association of the host chromosome with the pBtic235 element. This association may play a functional role in the replication of the bacterial chromosome, and the termination of this process in particular. The genome-restructuring events detected may modify the genetic status of cytotoxic or haemolytic toxins, potentially influencing strain virulence. Twelve of the single-nucleotide variants identified in 4Q7 were probably due to the procedure used for strain construction or were present in the precursor of this strain. No sequence variants were found in pBtic235, but the distribution of the corresponding 4Q7 reads indicates a significant difference from counterparts in natural B. thuringiensis serovar israelensis strains, suggesting a duplication or over-replication in 4Q7. Thus, the 4Q7 strain is not a pure plasmid-less offshoot, but a highly genetically modified derivative of its natural ancestor. In addition to potentially influencing virulence, genome-restructuring events can modify the replication termination machinery. These findings have potential implications for the conclusions of virulence studies on 4Q7 as a model, but they also raise interesting fundamental questions about the functioning of the Bacillus genome.


2016 ◽  
Vol 198 (24) ◽  
pp. 3355-3366 ◽  
Author(s):  
Laurel D. Wright ◽  
Alan D. Grossman

ABSTRACTIntegrative and conjugative elements (ICEs), also known as conjugative transposons, are self-transferable elements that are widely distributed among bacterial phyla and are important drivers of horizontal gene transfer. Many ICEs carry genes that confer antibiotic resistances to their host cells and are involved in the dissemination of these resistance genes. ICEs reside in host chromosomes but under certain conditions can excise to form a plasmid that is typically the substrate for transfer. A few ICEs are known to undergo autonomous replication following activation. However, it is not clear if autonomous replication is a general property of many ICEs. We found that Tn916, the first conjugative transposon identified, replicates autonomously via a rolling-circle mechanism. Replication of Tn916was dependent on the relaxase encoded byorf20of Tn916. The origin of transfer of Tn916,oriT(916), also functioned as an origin of replication. Using immunoprecipitation and mass spectrometry, we found that the relaxase (Orf20) and the two putative helicase processivity factors (Orf22 and Orf23) encoded by Tn916likely interact in a complex and that the Tn916relaxase contains a previously unidentified conserved helix-turn-helix domain in its N-terminal region that is required for relaxase function and replication. Lastly, we identified a functional single-strand origin of replication (sso) in Tn916that we predict primes second-strand synthesis during rolling-circle replication. Together these results add to the emerging data that show that several ICEs replicate via a conserved, rolling-circle mechanism.IMPORTANCEIntegrative and conjugative elements (ICEs) drive horizontal gene transfer and the spread of antibiotic resistances in bacteria. ICEs reside integrated in a host genome but can excise to create a plasmid that is the substrate for transfer to other cells. Here we show that Tn916, an ICE with broad host range, undergoes autonomous rolling-circle replication when in the plasmid form. We found that the origin of transfer functions as a double-stranded origin of replication and identified a single-stranded origin of replication. It was long thought that ICEs do not undergo autonomous replication. Our work adds to the evidence that ICEs replicate autonomously as part of their normal life cycle and indicates that diverse ICEs use the same replicative mechanism.


Sign in / Sign up

Export Citation Format

Share Document