scholarly journals Bacterial DNA replication initiation factor priA is related to proteins belonging to the ‘DEAD-box’ family

1991 ◽  
Vol 19 (24) ◽  
pp. 6953-6953 ◽  
Author(s):  
Christos A. Ouzounis ◽  
Benjamin J. Blencowe
2017 ◽  
Vol 112 (3) ◽  
pp. 512a
Author(s):  
Masahiro Shimizu ◽  
Yasunori Noguchi ◽  
Yukari Sakiyama ◽  
Hironori Kawakami ◽  
Tsutomu Katayama ◽  
...  

mBio ◽  
2019 ◽  
Vol 10 (4) ◽  
Author(s):  
James A. Kraemer ◽  
Allen G. Sanderlin ◽  
Michael T. Laub

ABSTRACTThe stringent response enables bacteria to respond to a variety of environmental stresses, especially various forms of nutrient limitation. During the stringent response, the cell produces large quantities of the nucleotide alarmone ppGpp, which modulates many aspects of cell physiology, including reprogramming transcription, blocking protein translation, and inhibiting new rounds of DNA replication. The mechanism by which ppGpp inhibits DNA replication initiation inEscherichia coliremains unclear. Prior work suggested that ppGpp blocks new rounds of replication by inhibiting transcription of the essential initiation factordnaA, but we found that replication is still inhibited by ppGpp in cells ectopically producing DnaA. Instead, we provide evidence that a global reduction of transcription by ppGpp prevents replication initiation by modulating the supercoiling state of the origin of replication,oriC. Active transcription normally introduces negative supercoils intooriCto help promote replication initiation, so the accumulation of ppGpp reduces initiation potential atoriCby reducing transcription. We find that maintaining transcription nearoriC, either by expressing a ppGpp-blind RNA polymerase mutant or by inducing transcription from a ppGpp-insensitive promoter, can strongly bypass the inhibition of replication by ppGpp. Additionally, we show that increasing global negative supercoiling by inhibiting topoisomerase I or by deleting the nucleoid-associated protein geneseqAalso relieves inhibition. We propose a model, potentially conserved across proteobacteria, in which ppGpp indirectly creates an unfavorable energy landscape for initiation by limiting the introduction of negative supercoils intooriC.IMPORTANCETo survive bouts of starvation, cells must inhibit DNA replication. In bacteria, starvation triggers production of a signaling molecule called ppGpp (guanosine tetraphosphate) that helps reprogram cellular physiology, including inhibiting new rounds of DNA replication. While ppGpp has been known to block replication initiation inEscherichia colifor decades, the mechanism responsible was unknown. Early work suggested that ppGpp drives a decrease in levels of the replication initiator protein DnaA. However, we found that this decrease is not necessary to block replication initiation. Instead, we demonstrate that ppGpp leads to a change in DNA topology that prevents initiation. ppGpp is known to inhibit bulk transcription, which normally introduces negative supercoils into the chromosome, and negative supercoils near the origin of replication help drive its unwinding, leading to replication initiation. Thus, the accumulation of ppGpp prevents replication initiation by blocking the introduction of initiation-promoting negative supercoils. This mechanism is likely conserved throughout proteobacteria.


2021 ◽  
Author(s):  
Charles Winterhalter ◽  
Daniel Stevens ◽  
Stepan Fenyk ◽  
Simone Pelliciari ◽  
Elie Marchand ◽  
...  

The mechanisms responsible for helicase loading during the initiation of chromosome replication in bacteria are unclear. Here we report both a positive and a negative mechanism for directing helicase recruitment in the model organism Bacillus subtilis. Systematic mutagenesis of the essential replication initiation gene dnaD and characterization of DnaD variants revealed protein interfaces required for interacting with the master initiator DnaA and with a specific single-stranded DNA (ssDNA) sequence located in the chromosome origin (DnaD Recognition Element, DRE). We propose that the location of the DRE within the replication origin orchestrates recruitment of helicase to achieve bidirectional DNA replication. We also report that the developmentally expressed repressor of DNA replication initiation, SirA, acts by blocking the interaction of DnaD with DnaA, thereby inhibiting helicase recruitment to the origin. These findings significantly advance our mechanistic understanding of helicase recruitment and regulation during bacterial DNA replication initiation. Because DnaD is essential for the viability of clinically relevant Gram-positive pathogens, DnaD is an attractive target for drug development.


1997 ◽  
Vol 17 (6) ◽  
pp. 3261-3271 ◽  
Author(s):  
A M Merchant ◽  
Y Kawasaki ◽  
Y Chen ◽  
M Lei ◽  
B K Tye

We describe a new minichromosome maintenance factor, Mcm10, and show that this essential protein is involved in the initiation of DNA replication in Saccharomyces cerevisiae. The mcm10 mutant has an autonomously replicating sequence-specific minichromosome maintenance defect and arrests at the nonpermissive temperature with dumbbell morphology and 2C DNA content. Mcm10 is a nuclear protein that physically interacts with several members of the MCM2-7 family of DNA replication initiation factors. Cloning and sequencing of the MCM10 gene show that it is identical to DNA43, a gene identified independently for its putative role in replicating DNA. Two-dimensional DNA gel analysis reveals that the mcm10-1 lesion causes a dramatic reduction in DNA replication initiation at chromosomal origins, including ORI1 and ORI121. Interestingly, the mcm10-1 lesion also causes replication forks to pause during elongation through these same loci. This novel phenotype suggests a unique role for the Mcm10 protein in the initiation of DNA synthesis at replication origins.


2019 ◽  
Vol 16 (3) ◽  
pp. 272-277 ◽  
Author(s):  
Rasmus N. Klitgaard ◽  
Anders Løbner-Olesen

Background:One of many strategies to overcome antibiotic resistance is the discovery of compounds targeting cellular processes, which have not yet been exploited.Materials and Methods:Using various genetic tools, we constructed a novel high throughput, cellbased, fluorescence screen for inhibitors of chromosome replication initiation in bacteria.Results:The screen was validated by expression of an intra-cellular cyclic peptide interfering with the initiator protein DnaA and by over-expression of the negative initiation regulator SeqA. We also demonstrated that neither tetracycline nor ciprofloxacin triggers a false positive result. Finally, 400 extracts isolated mainly from filamentous actinomycetes were subjected to the screen.Conclusion:We concluded that the presented screen is applicable for identifying putative inhibitors of DNA replication initiation in a high throughput setup.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Katarzyna Wegrzyn ◽  
Igor Konieczny

Abstract Objective The ability to form nucleoprotein complexes is a fundamental activity of DNA replication initiation proteins. They bind within or nearby the region of replication origin what results in melting of a double-stranded DNA (dsDNA) and formation of single-stranded DNA (ssDNA) region where the replication machinery can assemble. For prokaryotic initiators it was shown that they interact with the formed ssDNA and that this interaction is required for the replication activity. The ability to interact with ssDNA was also shown for Saccharomyces cerevisiae replication initiation protein complex ORC. For Archaea, which combine features of both prokaryotic and eukaryotic organisms, there was no evidence whether DNA replication initiators can interact with ssDNA. We address this issue in this study. Results Using purified Orc1 protein from Aeropyrum pernix (ApOrc1) we analyzed its ability to interact with ssDNA containing sequence of an AT-rich region of the A. pernix origin Ori1 as well as with homopolymers of thymidine (polyT) and adenosine (polyA). The Bio-layer interferometry, surface plasmon resonance and microscale thermophoresis showed that the ApOrc1 can interact with ssDNA and it binds preferentially to T-rich ssDNA. The hydrolysis of ATP is not required for this interaction.


2001 ◽  
Vol 21 (17) ◽  
pp. 5767-5777 ◽  
Author(s):  
Amit Vas ◽  
Winnie Mok ◽  
Janet Leatherwood

ABSTRACT Cdc2 kinase is a master regulator of cell cycle progression in the fission yeast Schizosaccharomyces pombe. Our data indicate that Cdc2 phosphorylates replication factor Orp2, a subunit of the origin recognition complex (ORC). Cdc2 phosphorylation of Orp2 appears to be one of multiple mechanisms by which Cdc2 prevents DNA rereplication in a single cell cycle. Cdc2 phosphorylation of Orp2 is not required for Cdc2 to activate DNA replication initiation. Phosphorylation of Orp2 appears first in S phase and becomes maximal in G2 and M when Cdc2 kinase activity is required to prevent reinitiation of DNA replication. A mutant lacking Cdc2 phosphorylation sites in Orp2 (orp2-T4A) allowed greater rereplication of DNA than congenic orp2 wild-type strains when the limiting replication initiation factor Cdc18 was deregulated. Thus, Cdc2 phosphorylation of Orp2 may be redundant with regulation of Cdc18 for preventing reinitiation of DNA synthesis. Since Cdc2 phosphorylation sites are present in Orp2 (also known as Orc2) from yeasts to metazoans, we propose that cell cycle-regulated phosphorylation of the ORC provides a safety net to prevent DNA rereplication and resulting genetic instability.


Sign in / Sign up

Export Citation Format

Share Document